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Abstract
Purpose De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase 
(HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in 
the induction and maintenance of stem-like states in tumors remains unclear.
Methods A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. 
Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRIS-
PRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM 
system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups 
and one- or two-way ANOVA.
Results Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were 
associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis 
showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins 
in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by 
expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ −, CD133 + populations, and increased 
mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell 
reprogramming of MCF-7 cells did not increase HMGCR expression.
Conclusion HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progres-
sion and statin sensitivity.
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Abbreviations
BC  Breast cancer
CSC  Cancer stem cell
MVA  Mevalonic acid pathway
RFS  Recurrence-free survival
ER  Estrogen receptor
TNBC  Triple-negative breast cancer
iPSCs  Induced pluripotent stem cells
PBS  Phosphate buffer solution
RT  Room temperature
ON  Overnight

Introduction

Alterations in lipid metabolism have gained attention as 
main players in many aspects of cancer growth, includ-
ing cancer stem cells (CSCs) states. Indeed, hypercholes-
terolemia can lead to cancer by several means, including 
cholesterol derived-oncometabolites (Silvente-Poirot et al. 
2018), or an increased but regulated uptake of cholesterol 
in the form of low-density lipoprotein (LDL)-cholesterol 
(Scully et al. 2022). In addition, enhanced endogenous bio-
synthesis of cholesterol and isoprenoids appears to play a 
role in cancer initiation and progression (Göbel et al. 2022), 
since many enzymes in the mevalonic acid (MVA) pathway 
such as 3-hydroxy-3methylglutaryl-coenzyme A reductase 
(HMGCR), farnesyl diphosphate synthase, geranylgeranyl 
pyrophosphate synthase, squalene synthase and squalene 
epoxidase are overexpressed and overactivated in mela-
noma (Kuzu et al. 2016), glioblastoma (Abate et al. 2017), 
lung (Wang et al. 2018), colon (Gao et al. 2021), prostate 
(Todenhöfer et al. 2013), ovarian (de Wolf et al. 2017) and 
breast cancer (BC) (Brown et al. 2016). Moreover, in the 
seminal work by Clendening et al. (2010), it was demon-
strated that overexpression of the rate-limiting enzyme of 
the MVA pathway and the target of the lipid-lowering drugs 
statins, HMGCR, promoted malignant transformation in BC. 
A more recent study in patient-derived xenograft tumors 
(PDXs) from ER-negative BC confirmed that the cholesterol 
biosynthesis pathway was critical to breast CSCs propaga-
tion and a potential therapeutic target (Ehmsen et al. 2019).

The CSCs hypothesis postulates that tumors are hierar-
chically organized, with a small fraction of stem cells at the 
apex of the hierarchy, and rapidly proliferating and differen-
tiated, post-mitotic cells constituting the bulk of the tumor 
(Clevers 2011; Azizidoost et al. 2023). Particularly, BC stem 
cells (BCSCs) are a small population of BC cells that share 
many traits with normal mammary stem cells, play a critical 
role in the metastasis of BC to other organs in the body, have 
the ability to self-renew, differentiate to give rise to phe-
notypically diverse cells, and are resistant to conventional 
anti-cancer treatments, thus being implicated in disease 

recurrence and metastasis (Song and Farzanehl 2021). Cur-
rently, the view of the CSCs model incorporates the concept 
of cellular plasticity (potential for cellular reprogramming), 
suggesting “stemness” would be a cellular state capable of 
being switched on or off in response to cell-intrinsic and/
or microenvironmental cues (Corominas-Faja et al. 2013; 
Vazquez-Martin et al. 2013).

Being a target for HMGCR inhibitors, the MVA path-
way may exert interesting therapeutic potential for treatment 
and prevention of BC, since statins can affect a wide range 
of molecular processes such as inflammation, cell migra-
tion, proliferation, apoptosis, angiogenesis and stemness by 
means of cholesterol-mediated and non-mediated pathways 
(Zaky et al 2023). In this regard, it has been shown that 
treatment with Simvastatin (SIM) decreased the number of 
CSCs and formation of mammospheres from drug-resistant 
cells and from PDX tumors (Gopalan et al. 2013; Ehmsen 
et al. 2019) and decreased the expression of CSC markers 
in an in vivo model (Rennó et al. 2015). Moreover, Lov-
astatin (LOVA) was identified as a CSC-targeting drug 
(Vásquez-Bochm et al. 2019). These results imply that the 
MVA pathway is implicated in the enrichment of CSCs, and 
that anti-cholesterol therapies may be able to eliminate the 
stem compartment of the tumor. Therefore, in the present 
work, we aimed to elucidate the contribution of HMGCR 
to the induction and maintenance of CSC-states and statin 
response in BC.

Materials and methods

Public databases

A compiled database (Breast Cancer Metabase 10 cohorts 
22 K genes; n = 1901) was analyzed with the web application 
SurvExpress from the Tecnológico de Monterrey, México 
(Aguirre-Gamboa et al. 2013), (Cuéllar et al. 2015). Expres-
sion of the following MVA pathway enzymes was assessed: 
Acetyl-CoA acetyltransferase (ACAT2), hydroxymethylglu-
tharyl Acetyl-CoA synthase 1 (HMGCS1), HMGCR, meva-
lonate kinase (MVK), phosphomevalonate kinase (PMVK), 
mevalonate pyrophosphate decarboxylase (MVD), isopente-
nyl diphosphate Delta isomerase 1 (IDI1), FDPS, GGPS1, 
FDFT1, SQLE, Lanosterol Synthase (LSS), 7-dehydrocho-
lesterol Reductase (DHCR7) and Delta(24)-sterol Reductase 
(DHCR24). Patients were dichotomized on the basis of the 
corresponding mRNA abundance and Kaplan Meier (KM) 
curves were plotted with differences in outcome calculated 
using a Cox proportional hazard model. The web application 
Cell Miner from the National Cancer Institute (NCI 2020) 
was used to determine the levels of HMGCR and the relative 
drug activity of SIM, LOVA, Atorvastatin (ATOR), Fluvas-
tatin (FLUV) and Mevastatin (MEVA) across 60 cancer cell 
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lines (NCI-60 panel). Results are expressed as Z-scores as 
previously described (Reinhold et al. 2012).

Plasmids, cell culture and transfections

The sgRNA expression plasmid (pSPgRNA) and the plasmid 
encoding dCas9-VP160 (pAC94-pmax-dCas9-VP160-2A-
puro) were developed by others (Perez-Pinera et al. 2013; 
Cheng et al. 2013) and obtained from Addgene (plasmids 
#47108 and #48226). The system was generated as previ-
ously described (Giménez et al. 2016). For more details, see 
Supplementary Fig.S1. For cell reprogramming experiments, 
the bicistronic lentiviral system pLM-OSKM (Papapetrou 
et al. 2009) (plasmids #22240, #23242, #23243, #23244), 
plus the envelope psPAX and packaging pMD2G plasmids 
(#12259 and # 12260) were used. BC human cell lines 
MCF-10A (ATCC Cat# CRL-10317, RRID:CVCL_0598), 
MCF-7 (ATCC Cat# HTB-22, RRID:CVCL_0031) and 
Hs578T (ATCC Cat# CRL-7849, RRID:CVCL_0332) were 
a gift from Dr. Luthy’s lab, and T47D (ATCC Cat# HTB-
133, RRID:CVCL_0553), BT474 (ATCC Cat# CRL-7913, 
RRID:CVCL_0179), MDA-MB-231 (ATCC Cat# CRL-
12532, RRID:CVCL_0062), MDA-MB-468 (ATCC Cat# 
HTB-132, RRID:CVCL_0419) and HCC70 (ATCC Cat# 
CRL-2315, RRID:CVCL_1270) were a gift from Dr. Elizal-
de’s lab. BT474 were authenticated by the Human Cell Line 
Authentication STR Profiling Service from the Johns Hop-
kins University with the GenePrint 10 System (Promega). 
HepG2 (ATCC Cat# HB-8065, RRID:CVCL_0027) were a 
gift from Dr. Galignana’s Lab. The embryonic stem cell line 
WA-09 (RRID:CVCL_9773), the induced Pluripotent Stem 
Cells (iPSCs) (Questa et al. 2016) and the human Dermal 
Fibroblasts (hDFs) were provided by Dr. Leonardo Romorini 
and the Glioma CSCs panel (Videla Richardson et al. 2016) 
by Dr. Guillermo Videla Richardson. Culture media and sup-
plements are described in Supplementary Table 1. All cells 
were maintained at 37 °C in a humidified 5%  CO2 atmos-
phere. Transfection of MCF-7 cell line was performed with 
 FuGENE® HD (Promega; Madison, WI, USA) using a 3:1 
reagent/DNA ratio. The dCas9-VP160 plasmid was trans-
fected at a mass ratio of 1:1 to the cloned sgRNA expression 
plasmid in MCF-7/CR cells or to the empty sgRNA plasmid 
in transfection control (MCF-7/TC) cells.

Mammosphere and extreme limiting dilution assay 
(ELDA)

Sphere-forming assays and ELDA were performed as previ-
ously described (Manuel Iglesias et al. 2013, Hu and Smyth 
2009). Briefly, after transfection, decreasing concentra-
tions of cells (300, 100, 30 and 10) were seeded in 200 µL 
of sphere media/well in 96-well culture plates, previously 
treated with Poly (2-hydroxyethyl methacrylate) (Sigma). 

Each condition was assayed in replicas and after 7–10 days 
of culture, the frequency of stem/progenitor cells in the 
cultures was calculated with the online web tool from the 
Walter and Eliza Hall Institute of Medical Research Bioin-
formatics Division. Sphere media was composed of DMEM/
F12 (Gibco) supplemented with 2% B27, 1% glutamin, 0.1% 
methylcellulose, 20 ng/µL Epidermal Growth factor (EGF) 
and 20 ng /µL basic Fibroblast Growth Factor (bFGF).

RNA extraction, reverse transcription 
and quantitative real‑time PCR (qRT‑PCR)

Total RNA was extracted with the TriReagent kit (MRC Inc, 
Cincinnati, OH, USA), according to manufacturer’s instruc-
tions. Concentration and quality of the RNA was measured 
with Nanodrop 2000 (Thermo Scientific, Waltham, MA, 
USA). The Easy Script First-Strand c-DNA Synthesis Super-
mix (Transgen Biotech, Beijing, China) and the Applied 
Biosystems Power  SYBR® Green PCR Master Mix (Ther-
mofisher, Waltham, MA, USA) were used in an Applied 
Biosystems 7500 thermocycler. Data were normalized to 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 
ribosomal protein L7 (RPL7) and calculated by the  2−DDct 
method. Data were analyzed by one-way ANOVA, followed 
by Dunnett’s multiple comparison test (vs MCF-10A). 
Primer sequences are listed in Supplementary Table 2.

Statins activation and treatment

Simvastatin and Lovastatin were a gift from Dr. Juan Car-
los Calvo and were activated according to previous reports 
(Liang et al. 2006, Dong et al. 2009). For treatment with 
statins, cells were seeded at 1–3 ×  103 cells/ well in 96-well 
plates and allowed to attach. Cells were treated with 10 
to 40 µM of statins or drug vehicle and left at 37 °C in a 
humidified 5%  CO2 atmosphere. After 48 h, cell viability 
was assessed using the CellTiter  96®  AQueous One Solu-
tion Cell Proliferation assay (MTS) (Promega Corporation, 
WI, USA), following the manufacturer’s instructions. The 
absorbance was measured at 490 nm using a microplate 
reader (Thermo Scientific).

Lentivirus production

For the production of 2nd-generation lentiviral vectors for 
reprogramming (Papapetrou et al. 2009), calcium chloride 
 (CaCl2) transfection of Hek-293 T cells was used. Briefly, 
Hek-293 T cells were seeded onto 10 cm Petri dishes. The 
day of transfection,  CaCl2, packing and envelope plasmids 
DNA (3:1:2, w:w:w) and water up to 500 µL were mixed, 
and then, 500 µL of Hepes buffered saline was added drop-
wise and incubated at RT for 20 min. Next, the transfection 
mix was added to the cells and incubated at 37 °C for 16 h. 
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Fresh medium was added for an additional 4 h, and then, 
viral supernatants were collected, filtered with 0.45 µm pore 
size and stored at − 80 °C.

Cell reprogramming

MCF-7 cells were seeded in 6-well plates and incubated 
in the presence of viral supernatants and 10 μg/mL poly-
brene (Hexadimethrine Bromide, Sigma) for 16–20  h. 
Next, viral supernatants were changed for fresh medium. 
Six days after infection, 100.000 were plated onto an irradi-
ated Mouse Embryonic Fibroblasts (irrMEFs) feeder layer 
and the medium changed to fresh human stem cells medium 
[DMEM-F12 (Gibco), 20% Knock-Out Serum Replace-
ment (Gibco), 1% de PenStrepto (Gibco), Glutamax 2 mM 
(Gibco), 1X Beta–mercaptoethanol (Gibco), non-essen-
tial aminoacids 0.1 mM (Gibco) and bFGF/mL 4 ng/mL 
(Gibco)]. After 20–40 days the colonies with the adequate 
morphology were manually picked and seeded onto irrMEFs 
for further expansion and characterization.

Statistical analysis

Statistical significance was calculated using the software 
GraphPad  Prism® 6.00 (GraphPad Software Inc., San Diego, 
CA). Comparisons were performed by two-tailed unpaired 
t-test for two groups and one- or two-way ANOVA (as indi-
cated in the experiments) followed by Dunnett’s as the post 
hoc test for more than two groups. Results were considered 
significant at p < 0.05 and are expressed as percentages rela-
tive to the control group, sample or cell line. Data are shown 
as the mean ± SEM of three independent experiments (n = 3) 
unless stated otherwise.

Results

Expression of several MVA genes is associated 
with worse prognosis in BC patients

To assess the impact of HMGCR and several members of 
the MVA pathway on the recurrence-free survival (RFS) of 
BC patients, a compiled database was analyzed with the web 
application SurvExpress. As shown in Fig. 1a, high expres-
sion of 11 out of the 14 genes analyzed (ACAT2, HMGCS1, 
HMGCR, MVK, MVD, IDI1, FDPS, GGPS1, SQLE, LSS 
and DHCR7), along with low expression of PMVK, FDFT1 
y DHCR24, a sub-set of BC patients with high risk and a 
shorter RFS. In particular, HMGCR expression was associ-
ated with a decreased RFS with a hazard ratio = 1.43 (CI 
95% 1.22–1.67; p = 9.52 e-6). Interestingly, upon stratifica-
tion of HMGCR KM plots on the basis of estrogen recep-
tor (ER) status, HMGCR was associated with a lower RFS 

in ER-positive patients, with a hazard ratio = 1.78 (CI 95% 
1.46–2.16; p = 8.41 e-6), whereas there was no association 
in the ER-negative group (Fig. 1b).

Differential expression of HMGCR and statin 
sensitivity in cancer cell lines

In silico analysis indicate variability in HMGCR gene 
expression across cancer types. In this regard, cell lines 
derived from melanoma and ovarian cancer showed 
increased levels, whereas 4 out of the 5 BC cell lines showed 
lower HMGCR expression when compared to the mean of 
the NCI-60 panel (Fig. 2a). Analysis of statin response of 
BC cell lines to several statins (SIM, LOVA, ATOR, FLUV 
and MEVA) with Cell Miner showed a general resistance 
to these drugs in the luminal cell lines (MCF-7, T47D) 
and a variable response of the triple-negative breast cancer 
(TNBC) cell lines (Hs578T, MDA-MB-231). Of note, the 
BC cell line with the highest levels of HMGCR, BT-549, 
consistently showed statin resistance, indicating that addi-
tional factors other than the expression of HMGCR might be 
regulating statins sensitivity in BC (Fig. 2b). Irrespectively 
of the tissue of origin, most cell lines across the NCI-60 
panel were, to some degree, resistant to statins (Fig. 2c). Of 
interest, SIM appears to be the strongest drug, since 67.8% 
(40 out of 59) of the cell lines analyzed displayed resistance 
to treatment. The variability in HMGCR expression regard-
less of BC subtype and higher resistance to statins in lumi-
nal models was also corroborated in vitro in a panel of BC 
cell lines comprising representative luminal (MC-7, T47D, 
BT474) and TNBC models (MDA-MB-468, HCC70, MDA-
MB-231, Hs578T) (Fig.  3a). Hepatocellular carcinoma 
hepG2 cell line was used as positive control and the immor-
talized non-transformed mammary epithelial line MCF-10A 
as negative control. To assess the sensitivity of BC cells 
to statins, viability of MCF-7, T47D, MDA-MB-231 and 
Hs578T cell lines was analyzed (Fig. 3b). In accordance 
with results from Cell Miner, both luminal BC models 
(MCF-7, T47D cells) showed resistance to SIM and LOVA, 
whereas TNBC models (MDA-MB-231 and Hs578T cells) 
were highly sensitive. Moreover, also in accordance with the 
in silico data, MDA-MB-231 cells were the most sensitive 
to both statins. These results further indicate that additional 
factors other than HMGCR (possibly BC origin and/or dif-
ferentiation state) may be regulating statins response.

Generation of a HMGCR‑overexpressing system 
with stem‑like traits in BC

To better understand the effects of endogenous overexpres-
sion of HMGCR in BC progression, differentiation state 
and statins sensitivity, we developed a HMGCR overex-
pression model in MCF-7 BC cells. Total HMGCR mRNA 
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levels were assessed by qRT-PCR up to 6 days post-trans-
fection (Supplementary Fig. S2a). The time for analysis 
was set at 48 h and found significantly increased (more 
than threefold) HMGCR total levels in MCF-7/CR cells. 
HMGCR has two isoforms, one full length (FL-HMGCR) 
and one with a deletion in the exon 13 (DL13-HMGCR). 

We observed that the CRISPRon system significantly 
increased the levels of both isoforms (FL: more than 
twofold and DL13: more than 1.5-fold) (Fig. 4a). At the 
protein level, HMGCR was also increased (Supplemen-
tary Fig. S2b). To assess the appearance of stem cell-like 
traits in MCF-7/CR cells, we analyzed the expression of 

Fig. 1  The MVA pathway is associated with worse outcome in BC 
patients. Box plots and KM curves of BC patients classified accord-
ing to the combined expression levels of several MVA pathway genes 
(a). KM curves according to HMGCR expression in all (top),  ER+ 
(center) and  ER− (bottom) samples (b). Red and Green box plots and 
curves denote high- and low-risk groups, respectively. KM curves for 
risk groups and p-value of the log-rank test are shown. Red and green 
numbers below horizontal axis of KM curves represent the number of 
individuals not presenting the event of the corresponding risk group. 
The number of individuals, the number of censored samples (shown 
as “+” marks) and the concordance index (CI) of each risk group 

are shown in the top-right insets. ACAT2: Acetyl-CoA acetyltrans-
ferase; HMGCS1: Hydroxymethylglutharyl Acethyl-CoA synthase 1; 
HMGCR: 3-hydroxy-3-methylglutaryl-coenzyme A reductase; MVK: 
Mevalonate kinase; PMVK: Phosphomevalonate kinase; MVD: 
Mevalonate pyrophosphate decarboxylase; IDI1: Isopentenyl diphos-
phate Delta isomerase 1; FDPS: Farnesyl diphosphate synthase; 
GGPS1: Geranylgeranyl pyrophosphate synthase; FDFT1: Squalene 
synthase; SQLE: Squalene epoxidase; LSS: Lanosterol synthase; 
DHCR7: 7-dehydrocholesterol Reductase and DHCR24: Delta(24)-
sterol Reductase
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the canonical “Yamanaka Factors” OCT4, SOX2, KLF4 
and c-MYC and the stem cell-related genes NANOG and 
ECAD and found a significant up-regulation of NANOG 
(1.5-fold), a moderate up-regulation of SOX2 and a signifi-
cant down-regulation of KLF4 (1.5-fold). OCT4, c-MYC, 
BCRP, Vimentin and ECAD were not altered (Fig. 4c). 
The mammosphere formation assay was performed and 
quantified by the limiting dilution assay and statistical 
analysis with the specialized software as described. We 
found that MCF-7/CR cells had a higher frequency of 
mammosphere formation when compared to MCF-7/TC 
cells (Fig. 4b). The expression of markers more directly 
related to a breast CSC state was also assessed, and we 
found small increases in  CD44high/CD24negative/low and 
 CD133+ populations in MCF-7/CR cells, although these 
changes were not statistically significant (Supplementary 
Fig. S2d and e). Finally, we found a decrease in cell adhe-
sion and concordant increase in cell migration in MCF-7/
CR cells, while no difference in proliferation was detected 
(Supplementary Fig. S2f).

HMGCR is associated to fully reprogrammed stem 
cell states

Taking into account that MCF-7/CR cells showed increased 
expression of the stemness markers NANOG and SOX2, 
it was tempting to speculate that HMGCR might be asso-
ciated to the acquisition of stemness in BC. With this in 
mind, we set out to assess the expression of HMGCR dur-
ing the reprogramming of the luminal BC cell line MCF-7 
with defined factors (OCT4, SOX2, KLF4 and c-MYC). 
Upon infection and seeding onto an irrMEFs feeder layer, 
we obtained colonies with different morphologies, picked 
those with defined edges, comprising compact, small cells 
and stablished four clones, termed MCF-7/Rep #3, #5, #6 
and #9 (Fig. 5a). Initial characterization performed by qRT-
PCR showed increased expression of SOX2 and low expres-
sion of NANOG in all clones and one clone, MCF-7/Rep #9, 
showed increased expression of OCT4 when compared to 
parental MCF-7 cells. Human Dermal Fibroblasts (hDFs) 
and iPSCs were included as negative and positive controls, 

Fig. 2  Relative transcript expression and drug activity levels in the 
NCI-60 panel. HMGCR expression across the NCI-60 cancer panel. 
BC: Breast; CNS: Central Nervous System; CO: Colon; LE: Leuke-
mia; ME: Melanoma; LC: Lung Cancer; OV: Ovarian Cancer; PR: 
Prostate; RE: Renal (a). Response to different statins (GI50%) in BC 
cell lines (b) and in the complete NCI-60 panel (c). Data are visual-
ized as Z-scores (a and b). In the histograms (c), each bin is deter-

mined by the cell line response to the drugs (x-axis). Negative val-
ues indicate resistance (white) and positive ones indicate sensitivity 
(black) to statins. Above the bars is indicated the number of cell lines 
per bin (frequency at which a particular response occurs, y-axis). 
SIM: Simvastatin; LOVA: Lovastatin; ATOR: Atorvastatin; FLUV: 
Fluvastatin; MEVA: Mevastatin
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Fig. 3  Expression of HMGCR is variable and response to statins 
subtype-dependent in BC. HMGCR expression was analyzed by RT-
qPCR in Luminal (MC-7, T47D, BT474) and triple-negative (MDA-
MB-468, HCC70, MDA-MB-231, Hs578T) BC cell lines. Hepatocel-
lular carcinoma hepG2 cell line was used as positive control and the 
immortalized non-transformed mammary epithelial line MCF-10A as 
negative control. Data were analyzed by one-way ANOVA, followed 
by Dunnett’s multiple comparison test (vs MCF-10A) (a). Viability of 

MCF-7, T47D, MDA-MB-231 and Hs578T cell lines after 48 h treat-
ment with SIM, LOVA or vehicle (Control). Data were analyzed by 
one-way ANOVA, followed by Dunnett’s multiple comparison test 
(vs Control; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) (b). 
Representative images of MCF-7, T47D, MDA-MB-231 and Hs578T 
cell lines treated with 10 µM SIM, 10 µM LOVA or vehicle (Control). 
Scale bar: 100 µm (c). SIM: Simvastatin; LOVA: Lovastatin
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respectively (Fig. 5b). Immunofluorescent detection of pluri-
potency markers was performed at the same passages in 
MCF-7/Rep clones #3 and #9, further confirming the results 
obtained at the transcriptional level for SOX2, NANOG and 
OCT4. Neither the parental cell line MCF-7 nor the clones 
showed expression of the cell surface markers TRA-1-60 
and SSEA4 (Supplementary Fig. S3a). Furthermore, alka-
line phosphatase activity was not observed in any of the 
MCF-7/Rep clones (Supplementary Fig. S3b). Finally, we 

analyzed HMGCR expression in all the MCF-7/Rep clones 
and observed levels comparable to those expressed in paren-
tal MCF-7 cells (Fig. 5b). To further confirm that the core 
pluripotency factors SOX2 and OCT4 do not upregulate 
HMGCR expression, we transduced MCF-7 cells with pLM-
OCT4 or pLM-SOX2 and found decreased HMGCR levels 
(Fig. 5c). Next, we addressed whether HMGCR was associ-
ated with established stem cell phenotypes, in both trans-
formed and non-transformed cell lines. We also included 

Fig. 4  Generation on an HMGCR overexpression system with 
stem-like traits in MCF-7 cell line. Total HMGCR (a) and isoforms 
HMGCR-FL and HMGCR-del13 (b) were analyzed by RT-qPCR in 
MCF-7 cell line 48 h following transfection with the CRISPRon sys-
tem. Quantification of mammosphere frequency in MCF-7/TC and 

MCF-7/CR cells (c). Pluripotency and breast CSC markers (OCT4, 
SOX2, KLF4, c-MYC, NANOG, BCRP, ECAD and Vimentin) ana-
lyzed by RT-qPCR (d). Data were analyzed by unpaired two-tailed 
t-test (vs MCF-7/TC; **p < 0.01, ***p < 0.001; ****p < 0.0001)
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in this analysis our stem-like model MCF-7/CR. With this 
purpose, we assessed HMGCR expression at the transcrip-
tional level in WA-09, iPSCs and eight cell lines enriched 
in CSCs from glioblastomas (termed G01, G02, G03, G04, 
G05, G07, G08 and G09). Both pluripotent cell lines showed 
increased levels of HMGCR when compared to MCF-7/TC 
cells, and interestingly, the iPSCs showed levels comparable 
to those of the MCF-7/CR cells (Fig. 5d). The glioblastoma 
CSC panel showed high variability in HMGCR levels but 
increased when compared to MCF-7/TC cells (Fig. 5e). 
Collectively, these results suggest that HMGCR expression 
may be an important trait of fully reprogrammed phenotypes 
in non-malignant cells, and a tumor type-dependent trait in 
highly undifferentiated malignant cells.

Discussion

Accumulating evidence indicates that stem-like states 
could be generated via three critical mechanisms, including 
gene transfer, genomic instability, and microenvironment 
alteration (Azizidoust et al. 2023). The latter is particularly 
important since the biomechanical nature of the extracellu-
lar matrix (ECM) is able to regulate cell fate in physiologi-
cal (embryonic development) and pathological (cancer and 
fibrotic diseases) situations (Li et al. 2020). For instance, 
ECM stiffness in fibrotic tissues activates Yes-associated 
protein (YAP) and the transcriptional coactivator with PDZ-
binding motif (TAZ), key effectors of the Hippo pathway, 
in epithelial cells, thus promoting cell proliferation, survival 
and stemness (Noguchi et al. 2018). Interestingly, YAP/TAZ 
are targeted by statins in different tumor types (Sethunath 
et al. 2019; Uemura et al. 2023; Benhammou et al. 2023). 
Therefore, understanding the intrinsic, microenvironmental 
and metabolic cues that enable the reprogramming of cancer 
cells into stem-like states could help unravel cancer patho-
genesis and therapy resistance, thus contributing towards 
the development of more effective treatments. In the present 
work, we aimed to elucidate the relationship between cho-
lesterol metabolism, statin sensitivity and the induction of 
stemness in BC.

Previous studies, in which HMGCR protein levels were 
associated with favorable clinicopathological characteris-
tics (Borgquist et al. 2008; Gustbée et al. 2015), have been 
challenged by gene expression data, although a more recent 
study again associates HMGCR expression with better 
clinical parameters (Yulian et al. 2023), proving that the 
relationship between HMGCR and prognosis in BC is still 
controversial. To this regard, our analyses in silico indi-
cated that overexpression of several members of the MVA 
pathway, including HMGCR, is associated with lower RFS 
in BC. Supporting our findings, HMGCR expression was 
shown to be associated with poor prognosis and decreased 

survival in BC patients, in PDX from TNBC and with more 
aggressive tumor characteristics such as higher histologi-
cal grade, high Ki67 and ER negativity (Clendening et al. 
2010; Ehmsen et al. 2019; Bjarnadottir et al. 2020). Our 
analysis of 60 cell lines from 12 different tumors with Cell 
Miner showed different expression profiles of HMGCR, 
which not always correlated with sensitivity to statins, sug-
gesting that other factors may be contributing to overall 
statin response. Indeed, by specific analysis of the BC cell 
lines within the NCI-60 panel, we found a similar response 
of each cell line to several statins, with high sensitivity of 
most ER-negative cell lines and resistance in ER-positive 
cells. Interestingly, neither BC subtype nor statin response 
appears to be completely related to HMGCR expression, as 
we further validated in vitro. Rather, statin response seems 
to be associated with the proportion of mesenchymal-like 
cells (Dolfi et al. 2013; Brooks et al. 2015). In line with 
this, we found that Hs578T and MDA-MB-231 cell lines, 
which show a gene expression profile similar to claudin-low 
tumors (Prat et al. 2010) were highly sensitive to statins, 
whereas luminal MCF-7 and T47D cell lines, characterized 
by the lowest proportion of CSCs and epithelial-like bulk 
cells (Brooks et al. 2015) were resistant. However, statin 
concentrations required to eliminate statin-sensitive cells are 
higher than those observed in human plasma during hyper-
cholesterolemia therapy (Ishikawa et al. 2018), highlighting 
the clinical need to enhance the effect of statins on cancer 
cells, mainly by its use as part of combination therapies. 
Indeed, SIM has been shown to improve the response to 
neoadjuvant therapy with fluorouracil, adriamycin, and 
cyclophosphamide (FAC) in patients with locally advanced 
BC, although the exact molecular mechanisms underlying 
the benefits of combining SIM and chemotherapy are not 
fully known (Yulian et al. 2021). Moreover, the same authors 
recently reported greater potential of statins in patients with 
locally advanced BC with low or no HMGCR expression 
(Yulian et al. 2023).

High concentrations of ATOR or SIM decreased the 
expression of pluripotency markers in human iPSCs and 
ATOR impaired the formation of teratomas in immunodefi-
cient mice (Nakashima et al. 2018), suggesting that statins 
may function as “tissue sweepers” of potentially rogue stem 
cells, ultimately being able to target undifferentiated and 
tumorigenic cells. Therefore, we used a CRISPR-CAS9 
transcriptional activation system (CRISPRon) to determine 
whether HMGCR could act as a facilitator for the acqui-
sition of stem-like states, considering: 1- MCF-7 cells 
expressed low levels of HMGCR; and 2- being a luminal 
BC cell model, MCF-7 contain a population of mostly epi-
thelial tumor bulk cells with a low frequency of CSCs. In 
our system, induction of HMGCR increased the sensitivity 
of MCF-7 cells to high concentrations of SIM, whereas there 
were no effects on the response to LOVA. We decided then 
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to explore functional indicators of malignancy such as the 
loss of cell adhesion and migration upon HMGCR overex-
pression and found that MCF-7/CR cells showed signifi-
cantly higher migration ability and a concordant decrease 
in cell adhesion. These results are in line with the in vitro 
evidence of a distinct role of HMGCR in the transforma-
tion and migration of several tumor types, including BC 
(Clendening et al. 2010; Singh et al. 2015; Ehmsen et al. 
2019). Resistance to anoikis is another functional trait that 
defines CSC-like populations, thus, we evaluated mammos-
phere formation ability in MCF-7/CR cells. Supporting our 
data, others have found that MVA pathway genes were over-
expressed in mammospheres from TNBC (Ginestier et al. 
2012). Since HMGCR seems to promote the growth of cells 
in undifferentiated states, we analyzed the expression of 
main pluripotency regulators and found that NANOG was 
significantly increased in MCF-7/CR cells. Strong expres-
sion of NANOG has been shown to be an indicator of poor 
prognosis in BC (Nagata et al. 2014), and further confirmed 
in TNBC (Nagata et al. 2017). A more recent work also 
supports the idea of a subtype-dependent role of pluripo-
tency markers in BC, since OCT4, SOX2 and NANOG 
were overexpressed in Her2 + BC tumors and associated 
with shorter overall survival (Yang et al. 2018). In vitro, 
tamoxifen-resistant T47D cells showed increased mammos-
phere formation ability, altered mammosphere morphology, 
and overexpression of OCT4 and NANOG, further enforc-
ing the role of these key pluripotency markers in BC pro-
gression and drug resistance (Rodriguez et al. 2023). We 
also observed a significant decrease of KLF4 in MCF-7/
CR cells, interestingly, high expression of this marker was 
associated with better disease-free survival in BC (Nagata 
et al. 2014) and overall survival in TNBC (Nagata et al. 
2017). In addition, we found a moderate increase in SOX2 
expression in MCF-7/CR cells, suggesting other pluripo-
tency networks may also interplay with HMGCR in stem-
like states. Conversely, HMGCR was expressed at high lev-
els in well-established pluripotent stem cell models as well 
as CSC lines from glioblastoma, suggesting that HMGCR 
might be a marker of acquired stem phenotypes in trans-
formed and non-transformed cells. Furthermore, following 

reprogramming of MCF-7 cells, 4 reprogrammed clones 
were obtained (MCF-7/Rep), characterized by increased 
expression of SOX2, in accordance with previously pub-
lished reprogrammed MCF-7 cells (Corominas-Faja et al. 
2013), in which endogenous transcriptional activation of 
SOX2, mTOR and increased activity of lipogenic pathways 
were described. These findings provide additional evidence 
that metabolic reprogramming, and particularly, a lipogenic 
phenotype, is a requirement for the acquisition of stem-like 
states in BC (Corominas-Faja et al. 2013). However, analysis 
of HMGCR in MCF-7/Rep cells revealed expression levels 
comparable to their parental counterparts. Of note, in our 
experiments, NANOG was the pluripotency marker more 
significantly upregulated in MCF-7/CR cells but showed 
no significant up-regulation in MCF-7/Rep cells. Thus, 
the absence of HMGCR (and NANOG) expression in the 
reprogrammed clones may reflect the incomplete or partial 
reprogramming usually observed in cell lines covering a 
wide range of human cancers, including BC (Lin et al. 2008; 
Miyoshi et al. 2010; Mathieu et al. 2011; Corominas-Faja 
et al. 2013; Stricker et al. 2013). It may also reflect that a 
single tumor contains breast CSCs with distinct molecular 
profiles, as reviewed in Song and Farzaneh (2021), and does 
not exclude the role of HMGCR as a promoter of stem cell 
traits through certain pluripotency transcription networks, 
such as NANOG. Indeed, fundamental biological barriers, 
including cancer-specific genetic mutations, epigenetic mod-
ifications, accumulation of DNA damage and reprogram-
ming-induced cellular senescence prevent the rewiring of 
most malignant cancer cells into pluripotency (Hochedlinger 
et al. 2004; Ramos-Mejia et al. 2012; Kim 2015). Although 
there are many unanswered questions, the high expression 
of HMGCR in pluripotent cells and CSCs models reported 
in this work, together with an HMGCR-induced stem-like 
phenotype in MCF-7 cells, suggests that this enzyme may 
act as a facilitator for the acquisition of stem-like states and 
be relevant to the maintenance of well-stablished stem cell 
states, possibly through the NANOG transcription network.

Conclusion

Here, we provide evidence that the endogenous transcrip-
tional activation of HMGCR in cells with strong epithelial 
nature, such as MCF-7 cells, promotes the appearance of 
stem-like traits in BC. This could impact tumor initiation 
and progression, as well as statin sensitivity in the con-
text of ER-positivity. Emerging as a potential alternative 
for the treatment of hormone-dependent and independent 
BC, statins may contribute to tumor shrinking, inhibition 
and/or delay of metastasis and relapse (Fig. 6). Overall, 
these results encourage additional studies to unravel the 
role of a still unexplored HMGCR/NANOG partnership 

Fig. 5  Reprogramming of MCF-7 cells. Representative images of the 
clones obtained upon transduction of MCF-7 cells with the lentiviral 
system pLM-OSKM. Scale bar: 200  µm (a). Initial characterization 
by qRT-PCR of OCT4, SOX2, NANOG and HMGCR expression of 
MCF-7/Rep clones, parental cell line and positive (iPSCs) and nega-
tive (hDFs) controls. Scale bar: 100 µm. hDFs, human dermal fibro-
blasts (b). HMGCR expression in MCF-7 cells separately transduced 
with the pluripotency factors OCT4 and SOX2 (c), in pluripotent 
stem cell lines (d) and in a panel of glioblastoma-derived CSCs (e) 
compared to the HMGCR overexpression system generated with 
MCF-7 cells. Data were analyzed by one-way ANOVA, followed 
by Dunnett’s multiple comparison test (vs MCF-7 in b and c and vs 
MCF-/TC in d and e; *p < 0.05, **p < 0.01, ****p < 0.0001)

◂
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in the metabolic reprogramming of tumors and the repur-
posing of statins as potential adjuvant therapies, which 
may prevent the generation and maintenance of stem-like, 
therapy-refractory states in BC.
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