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Abstract 
Background.  Glioblastoma is a malignant brain tumor requiring careful clinical monitoring even after primary man-
agement. Personalized medicine has suggested the use of various molecular biomarkers as predictors of patient 
prognosis or factors utilized for clinical decision-making. However, the accessibility of such molecular testing poses 
a constraint for various institutes requiring identification of low-cost predictive biomarkers to ensure equitable care. 
Methods.  We collected retrospective data from patients seen at Ohio State University, University of Mississippi, 
Barretos Cancer Hospital (Brazil), and FLENI (Argentina) who were managed for glioblastoma—amounting to 581 
patient records documented using REDCap. Patients were evaluated using an unsupervised machine learning ap-
proach comprised of dimensionality reduction and eigenvector analysis to visualize the inter-relationship of col-
lected clinical features.
Results.  We discovered that the serum white blood cell (WBC) count of a patient during baseline planning for treat-
ment was predictive of overall survival with an over 6-month median survival difference between the upper and 
lower quartiles of WBC count. By utilizing an objective PD-L1 immunohistochemistry quantification algorithm, we 
were further able to identify an increase in PD-L1 expression in glioblastoma patients with high serum WBC counts. 
Conclusions.  These findings suggest that in a subset of glioblastoma patients the incorporation of WBC count 
and PD-L1 expression in the brain tumor biopsy as simple biomarkers predicting glioblastoma patient survival. 
Moreover, machine learning models allow the distillation of complex clinical data sets to uncover novel and mean-
ingful clinical relationships.

Unsupervised machine learning models reveal 
predictive clinical markers of glioblastoma patient 
survival using white blood cell counts prior to initiating 
chemoradiation  
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Key Points

• Unsupervised learning models visualize complex data sets to uncover novel 
relationships.

• White blood cell count and PD-L1 expression are simple biomarkers predictive of 
glioblastoma patient survival.

Glioblastoma (GB) patients suffer from aggressive solid 
tumors of the central nervous system, with 95% pro-
jected to be deceased within 5 years following diag-
nosis.1 Cause of death in glioblastoma varies but may 
include herniation secondary to mass effect, treatment 
complications, and aspiration pneumonia due to brain-
stem dysfunction.2 Despite aggressive adjuvant therapy, 
however, almost all patients will experience tumor pro-
gression. To address this, major strides have been made 
within neuro-oncology to merge personalized medi-
cine to better predict patient outcomes. Although ther-
apies for GB management after maximal-safe surgical 
resection have remained largely unchanged since the 
concomitant use of temozolomide (TMZ) with radiation 
(ChemoRT), molecular biomarkers have been integrated 
as critical tools in the diagnosis and prognostication of 
gliomas.3,4 From a diagnostic standpoint, the lack of IDH 
mutation defines the current World Health Organization 
(WHO) 2021 definition of GB.4 Moreover, TERT promoter 
mutations, EGFR amplifications, and modifications of 
chromosome 7/9/10 are all recognized molecular changes 
present in GB.

Prognostically, several molecular markers have been 
suggestive of predicting outcomes in GB patients. Namely, 
MGMT promoter methylation status is routinely tested to 
predict TMZ efficacy due to the antagonistic role of MGMT-
mediated repair following TMZ-induced DNA alkylation.5,6 
However, other markers such as CDKN2A/B loss and 
EGFRvIII have been shown in retrospective studies to act 
as poor prognostic markers in GB patients or subset popu-
lations.7,8 The need for prognostic markers of disease is 
critical in ascertaining whether certain patients should be 
monitored more closely during follow-up. Furthermore, 
gold standard management of GB requires aggressive 
multimodal treatment amongst neuro-oncology, neuro-
surgery, neuroradiology, and radiation oncology which 

would largely benefit from improved triaging methods 
that prioritize which patients should or should not have 
such care. Moreso, precise prognostic grading bene-
fits patients and families when discussing management 
direction.

Unfortunately, molecular marker accessibility is not 
equal across healthcare ecosystems.9,10 Current discus-
sions in the field of neuro-oncology have pointed to 
major accessibility barriers and bioethical implications of 
pure reliance on molecular biomarkers of disease to un-
derstand cancer.10 Molecular pathology testing requires 
batching to reduce patient costs, resulting in significant 
turn-around time delays for molecular assays.11 In conse-
quence, groups have sought ways to evaluate outcomes of 
glioma patients using surrogate measures such as neuro-
cognitive testing, psychiatric examination, or image anal-
ysis of histology to predict molecular phenotypes as these 
turn-around-times are superior to those of molecular pa-
thology.9,12,13 Although promising, however, integration 
of these approaches will take time whereas routinely col-
lected data is readily available.

To better explore potential prognostic markers al-
ready routinely collected while managing GB patients, 
we retrospectively evaluated 581 patients at 4 sites from 
3 countries: Ohio State University (USA), University of 
Mississippi (USA), Barretos Cancer Hospital (Brazil), and 
FLENI (Argentina). Patient features were assessed using 
an unsupervised learning approach to understand how 
clinical metrics related to each other—including rele-
vant clinical endpoints such as progression-free survival 
(PFS) and overall survival (OS). Furthermore, by utilizing 
these novel relationships, we better characterized the 
relevance of routine complete blood counts (CBCs) and 
merged its utility with IHC staining in pathology to sug-
gest novel workflows that may predict outcomes of pa-
tients with GB.

Importance of the Study

Glioblastomas remain a challenging malig-
nancy to manage following surgical resection and 
chemoradiation. Efforts to identify prognostic markers 
of disease are therefore critical in ascertaining how 
a provider will manage a patient’s tumor. Current ef-
forts have largely focused on molecular markers to 
stratify patient populations, but these approaches are 
not equally accessible. Building upon studies that have 
evaluated routinely collected clinical data, we highlight 

the use of machine learning-based approaches to rap-
idly visualize relationships in clinical data to uncover 
novel trends. Moreover, the use of pretreatment blood 
count may play a role in patient prognostication and 
tumor microenvironment status. These findings thus 
highlight the importance of future exploration of patient 
tumor-immune activity while lowering the complexity of 
assessment through machine learning.
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Materials and Methods

Selection Criteria and Clinical Data Collection

Evaluation of retrospective clinical charts from the 
electronic health record (EHR) was performed at the 
Ohio State University (OSU) with IRB approval under 
study number 2020C0062, University of Mississippi 
(UMMC) with IRB approval under study number UMMC-
IRB-2022-93, Barretos Cancer Hospital with IRB approval 
under study number 1604/2018, and FLENI under ethics 
committee/patient’s informed consent approval. Clinical 
records from patients receiving GB care from 2012 to 2020 
were evaluated. Inclusion criteria for patients were desig-
nated by prior history of GB treatment with total surgical 
resection and ChemoRT. Following WHO 2021 guidelines, 
assessed GBs were defined using Grade-4 pathology and 
confirmation of IDH wild-type status.4 Prior histories of 
low-grade gliomas, IDH mutation, or patients with poor 
documentation of disease course were excluded. Study 
data were collected and managed using REDCap elec-
tronic data capture tools.14,15 REDCap was utilized to (a) 
securely store and deidentify patient records for down-
stream use, (b) ensure consistency of data collection, 
and (c) be distributable to collaborators desiring to rep-
licate or collect similar metrics as described in the study 
(Supplementary Document 1).

Clinical features were collected as listed in the EHR. 
Comorbidity scoring was performed by manually listing 
known comorbidities and scoring them in REDCap fol-
lowing the Charlson Comorbidity Index (CCI).16 Karnofsky 
performance scale (KPS) was recorded at the time of ini-
tial diagnosis to assess patient functional status. Lesion 
and molecular features were extracted from radiology 
and pathology reports, respectively. Results from CBCs—
including white blood cell count (WBC), neutrophil count, 
lymphocyte count, and platelet count were designated as 
CBC draws occurring approximately 2–4 weeks after sur-
gery during patient follow-up with neuro-oncology prior 
to beginning ChemoRT. The neutrophil-to-lymphocyte 
ratio (NLR) was calculated by dividing the neutrophil 
count by the lymphocyte count in a patient. Steroid dose 
was defined as the total daily dexamethasone steroid 
intake during the same day as CBC collection. Variables 
containing dates were converted to deidentified values 
of time to remove potential patient timeline identification 
after calculating relevant timespans in days. OS in the 
study was defined as the time from primary tumor resec-
tion until the time of death. PFS was defined as time from 
primary tumor resection until the time of initial detection 
of a novel enhancing lesion on imaging. Confirmation 
of enhancement as being either cancer-recurrent or 
treatment-reactive in nature was completed by clinical 
correlation and consensus from a multidisciplinary tumor 
board.

Exploration of Clinical Features

Collected clinical data from REDCap was exported 
and deidentified for use in R. Missingness of data was 

evaluated using the naniar package.17 Cases with over 
30% missing records were not evaluated using unsuper-
vised analysis while any missing features were imputed 
using the multiple imputation by chained equations (mice) 
package in R in order to perform principal component anal-
ysis (PCA) visualization alone (Supplementary Figure 1).18 
Using the factoextra package, PCA was performed over the 
data set and relations of clinical features were visualized 
using eigenvector plotting of our PCA as described in our 
previous work.19,20

Returning to our non-imputed data, the exploration of 
clinical features as a function of OS was explored using 
Cox regression modeling with a specific assessment of the 
relationships uncovered in our PCA visualization. Clinical 
features were independently evaluated using a univariate 
Cox model to assess the prediction of OS time. P-values 
less than .05 were omitted in subsequent modeling. 
Univariate-significant features were then evaluated using 
a multivariate Cox regression model using patient records 
found to have no missing relevant features. Patient sur-
vival was further explored by quartile stratification of pa-
tients for relevant clinical features (Supplementary Table 
1). The highest and lowest 25% groups were compared 
for PFS and OS using the survival and survminer pack-
ages.21,22 Visualization of relevant clinical confounders was 
performed using R with ggplot2.23

PD-L1 Image Analysis

PD-L1 immunohistochemistry imaging was collected from 
relevant patient samples at Ohio State which underwent 
routine PD-L1 evaluation at the time of primary surgery 
for GB. Image tiles were collected from digital pathology 
slides and processed in R using EBImage.24 RBG images 
were deconvoluted for hematoxylin and DAB stain layers 
using sci-kit-image and reticulate.25,26 Segmentation for 
either hematoxylin or DAB staining was performed using 
Otsu thresholding.27 Segmented regions were calculated 
for morphologic features using EBImage. Filtration of seg-
mentation was performed using a random-forest-based 
classifier trained over intensity-based morphology fea-
tures to classify segmentation as no stain, low stain, me-
dium stain, and high stain (Supplementary Figure 2).28 No 
stain segmentations were filtered. PD-L1 staining was rep-
resented by the ratio of DAB-stained pixels to hematoxylin-
stained pixels—calculated from segmentation areas in 
EBImage based upon objective stain scoring approaches 
delineated by Igarashi et al.29

Results

Patient Characteristics

A total of 581 patients were evaluated and documented 
in REDCap across 4 centers. In turn, overall demographic 
scores and biases across centers were assessed. Overall, 
the mean age was 61 years (range: 20–89; Supplementary 
Table 2). Men slightly exceeded woman in representa-
tion across centers (Figure 1A). The distribution of ethnic 
origin is directly related to the site of collection. North 
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American sites represented predominately Caucasians 
and Black/African Americans with non-Latino ethnicity, 
while South American sites were of Caucasian and mixed 
ancestry—that in U.S. surveys would be considered 
Hispanic/Latino (Figure 1B and C). All patients had biopsy 
confirmed GB with total resection of tumor at primary 
surgery. There was a slight predominance of left-sided 
lesions primarily occurring in the frontal, temporal, and 
parietal lobes across sites (Figure 1D and E). On average, 
tumor diameter was 4.34 cm (range: 0.1–9.50 with most 
without midline shift on imaging with KPS near 80 (range: 
30–100; Supplementary Table 2). It was however noted 
that several clinical features were not collected in sites 
outside OSU (Supplementary Figure 1). When tested, IHC 
studies showed primarily ATRX locus intact (98%) and 
p53 mutation (78%) as defined by positivity in over 10% of 
cells. Predominant molecular features were EGFR ampli-
fication (56%) and unmethylated MGMT promoter status 
(57%).

ChemoRT overall followed a traditional 60 Gray-30 
fractions radiation plan, but some patients received a 
hypo-fractionated regimen or did not complete ChemoRT 
(Radiation Plan: 55.59 [range: 5.34–75]; Radiation 

Fractions: 26.8 [range: 1–50]). Adjuvant TMZ therapy 
was completed at 3 cycles on average (range: 0–19). 
Symptomatic management of edema with steroids at 
the time of CBC collection was on average 2.84 mg/
day with a broad range of use (range: 0–24). Outcomes 
of patients were assessed as both PFS and OS from the 
date of primary surgery. Among centers, the median OS 
ranged from 12 to 16 months without significant differ-
ence among groups while the median PFS was 6 months 
at OSU (Figure 2).

Unsupervised Analysis of Patient Reveals 
Capabilities of CBCs in Predicting Overall 
Survival Outcome and Time to Enhancement

Utilizing the various collected clinical data points, we 
sought to evaluate whether specific clinical features 
were correlated with relevant outcomes in patients that 
have not been previously integrated into clinical practice. 
Specifically, we posited that applying an unsupervised 
machine learning approach could reveal clinical relation-
ships amongst features permitting us to visualize novel 
findings predictive in GB patient prognosis. To do so, our 

300

200

P
at

ie
nt

 C
ou

nt
P

at
ie

nt
 C

ou
nt

P
at

ie
nt

 C
ou

nt

100

0

250

200

150

100

50

0

150

100

50

0

300

200

P
at

ie
nt

 C
ou

nt

100

0

400

Center Barretos OSU FLENI UMMC

300

200

P
at

ie
nt

 C
ou

nt

100

0

M
ale

Nat
ive

 A
m

er
ica

n

Le
ft

Righ
t

Bot
h

Fro
nt

al

Tem
po

ra
l

Par
iet

al

Occ
ipi

ta
l

Bra
in 

Ste
m

Cer
eb

ell
um

M
ixe

d

Asia
n

Blac
k

Cau
ca

sia
n

M
ixe

d

Unk
no

wn

Not
 L

at
ino

La
tin

o

Fem
ale

A

D E

B C

Figure 1. Distribution of patient demographics and lesion characteristics with respect to center. Bar plot distributions of (A) gender, (B) race, 
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multidimensional data set was reduced using principal 
components analysis (PCA) to stratify patients by these 
clinical metrics and visualized using PCA eigenvector plot-
ting (Figure 3). The directionality of eigenvectors (arrows) 
amongst other eigenvectors represents direct correlations 
through same arrow directionality, inverse correlations 
through opposite directionality, and no correlation through 
orthogonal directionality. With these considerations, we 
identified relationships of features to relevant clinical out-
comes. Notably, the directionality of eigenvectors for OS 
and PFS occurred similarly [lower left quadrant] with in-
verse directionality to CBC-related measures—note that 
WBC and neutrophil measurements are in the upper right 
quadrant indicating that as WBC increased OS and PFS de-
creased (Figure 3). In contrast, enhancement status was 
shown on the right side of the plot, but other vectors had 
less robust directional relationships—with the most prom-
inent being inverse directionality of KPS and adjuvant TMZ 
dosage in the left quadrant. Nevertheless, as our eigen-
vector plot uncovered novel variations amongst clinical 
features, we further explored these findings using regres-
sion modeling.

Cox regression modeling was applied to predict OS 
based on our clinical features. Based on our PCA eigen-
vector plot, we theorized that CBC-related metrics would be 
significant in predicting survival time. Univariate models 
were first performed over the study population to assess 
which features were found to have significance. In total, 
12 separate features were found to be significant (Patient 
Age, KPS, CCI score, MGMT methylation status, WBC 
count, Neutrophil count, NLR, Radiation Dose, Radiation 
Fractions, Overall Radiation Time, Adjuvant TMZ Cycles, 
and Adjuvant TMZ Dose; Supplementary Table 3). A multi-
variate Cox regression model was constructed using 9 sig-
nificant features from Supplementary Table 3 which were 

not derived from each other (ie, neutrophil load is repre-
sented within WBC load or overall radiation time is affected 
by the fractionation of radiation). Six clinical features were 
found to be relevant (Patient Age at surgery, KPS at diag-
nosis, MGMT methylation status, WBC count at follow-up, 
Total Radiation Dose, and Completed Adjuvant TMZ Cycles; 
Supplementary Table 4). Although the contribution of WBC 
count was significant in our multivariate model, the hazard 
ratio (HR) was small (1.023 [1.001–1.046]). In consequence, 
although a small, but significant risk to poorer survival was 
evidenced by increased WBC load, we next sought to ex-
plore the causes of the observed difference our Cox mod-
eling showed against our PCA eigenvector plot.

Although Cox regression modeling validated the finding 
that CBCs have predictive capabilities for survival time, 
we further examined the discordance of our strong cor-
relations seen in the PCA eigenvector plot against the 
smaller HRs calculated in our Cox models. Specifically, 
we hypothesized the differences seen in our results may 
be underscored by robust survival differences present in 
the extremes of our CBC metrics. Specifically, based on 
our univariate Cox results, we explored survival differ-
ences in patients when stratified by WBC count, neutrophil 
count, and neutrophil:lymphocyte ratio. CBC measures 
were evaluated by stratifying populations into quartiles 
with the lower 25% (Lo in blue) and upper 25% (hi in red) 
of patients evaluated. In both overall WBC load and neutro-
phil load, PFS was significantly worse in the Hi group rel-
ative to the Lo group (P = .0082 and P = .039, respectively; 
Figure 4A and B). Furthermore, evaluation of OS using 
WBC load and neutrophils showed similar trends between 
groups (P = .00042 and P = .0007, respectively). However, 
while NLR did show a significant survival difference in OS 
(P = .0081), the difference in PFS between groups did not 
reach our threshold of significance (Figure 4C). Combined 
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with the previous analyses, our findings strongly support 
the use of CBCs in predicting both OS and PFS in patients. 
Specifically, the evaluation of routinely drawn WBC and 
neutrophil count at the time of pre-ChemoRT planning is 
shown to be correlative with poorer survival outcomes 
in patients with high load compared to patients with low 
load.

WBC Load is Reflective of Intrinsic Tumor 
Microenvironment Changes Present in 
Glioblastoma

As the measures of WBC load evaluate circulating im-
mune counts, we posited these differences in peripheral 
immune activity may correlate with intrinsic tumor mi-
croenvironment differences found in primary GB events. 

To assess this, we selected PD-L1 IHC staining done in a 
subset of patients during clinical evaluation. Amongst 
our study population, 57 cases had been evaluated by 
neuropathology for PD-L1 expression, and representa-
tive images were collected from cases and segmented 
using computer vision techniques to objectively quantify 
staining (Figure 5A). Staining was quantified as the ratio of 
DAB-positive PD-L1 staining against hematoxylin nuclear 
staining to control for tissue cellularity. In turn, increased 
detection of PD-L1 staining is represented by an increased 
DAB:hematoxylin ratio. It was observed that the WBC-Hi 
group showed higher ratios of PD-L1 DAB to hematoxylin 
staining when compared to WBC-Lo (P = .027, Figure 5B). 
Furthermore, assessing the 2 sides of the ratio comparison 
it was seen that while the amount of DAB pixels detected 
in an image was higher in the WBC-Hi group (P = .037), 
the detection of hematoxylin pixels did not vary between 
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groups (P = 0.63; Figure 5C and D). In conclusion, the in-
creased PD-L1 staining ratio in the WBC-Hi group was not a 
product of increased cellularity as the distribution of hema-
toxylin was not different. Overall, these findings indicate 
that an increase in PD-L1 staining was correlated with the 
WBC-Hi group which showed poorer survival outcomes in 
patients—validating that the observed differences in WBC 
load are correlative to initial immune activity present in GB 
lesions at resection.

Steroid Tapering is Highly Heterogenous 
Following Surgery and May Influence WBC Load

Although our analyses found a strong correlation be-
tween CBC load to survival outcomes, we further 

evaluated potential clinical confounders that may influ-
ence CBC levels prior to ChemoRT. As shown in the ana-
lyses of our study population, heterogeneity in patient 
demographics, lesion characteristics, and patient man-
agement was present (Supplementary Table 2). In turn, 
an assessment to identify whether specific clinical fea-
tures significantly varied between our Hi and Lo popu-
lations was critical. As patient age, CCI score, KPS, and 
MGMT methylation status were predictive of survival in 
our univariate Cox model, we assessed these factors in 
addition to other clinical features that were shown to be 
correlative to CBC measures in the eigenvector plot (le-
sion size and steroid intake; Figure 3 and Supplementary 
Table 3). Comparing WBC-Hi and Lo groups, MGMT 
methylation status distribution was not found to signif-
icantly vary between groups (X2 = 0.88, P-value = .35). 
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However, while patient age, CCI score, and lesion size 
were found to not vary between groups, significant var-
iations in KPS (P = 8.5e-04) and steroid dosing (P = 2.4e-
05) between groups were present with the WBC-Hi group 
showing a higher mean daily steroid intake compared to 
those in the Lo group (Figure 6A–E). Evaluating the dis-
tribution of steroid doses given to patients at the time 
of post-surgical CBC, a larger percentage of the patient 

from the WBC-Lo fully tapered off steroids (Hi: 24.2%; 
Lo: 65.1%). Nevertheless, an assay of patient distribution 
shows 55.9% of patients across both groups remain on 
steroids at follow-up prior to initiating ChemoRT (Figure 
6 F). Assessment of survival between Hi and Lo groups in 
patients that fully tapered off steroids showed significant 
PFS differences when stratified by WBC load (P = .045) 
and neutrophil load (P = .026), but significant trends were 
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not seen for OS (Supplementary Figure 3), Overall, these 
findings not only highlight the additional confounding 
role steroid intake and patient functional status may have 
on the survival differences seen between CBC load, but 
also emphasizes the heterogeneity of steroid dosing in 
patients following GB resection.

Discussion

PCA Eigenvector Visualization can Better 
Uncover Clinical Relationships in Complex 
Clinical Data Sets

To acknowledge, as shown in Supplementary Table 2, a 
large majority of features were missing amongst sites, 
thus findings should be viewed as a large single institu-
tion retrospective study with external validation needed 
in the future. With the adoption of the EHR, patient-related 
data has exponentially grown but remains an under-
used resource due to the complexity of mining data and 
uncovering novel associations. Such data provides the 
potential for generating new patient stratification strat-
egies.30 Our unsupervised PCA eigenvector approach may 
help rectify these challenges by providing easy-to-interpret 
visualizations of clinical data relationships. Illustrating this 
method’s utility in our study, the vectors measuring radi-
ation metrics showed opposite directionality to features 
measuring patient age. The directionality of these vectors 
thus underscores the known clinical management of GB 
patients whereby older individuals often receive hypo-
fractionated radiation dosage due to toxicity.31 The applica-
tion of our eigenvector plot to initially detect relationships 
of patient survival to CBCs illustrates the utility of applying 
this method in large clinical data sets as a first-pass visu-
alization approach in identifying novel relationships to ex-
plore in a clinical study.

CBC Stratification can be Applied to Identify 
Patients with Poorer Predicted Survival Outcome

It was highlighted that CBC metrics—namely WBC and 
neutrophil count—were inversely related to OS and PFS. 
Interestingly, past studies have indicated that several 
components of CBC tests have predictive outcomes in 
OS. Namely, Pierscianek et al. and Jarmuzek et al. both 
retrospectively identified similar effects of WBC counts 
as prognostic factors in OS using CBCs collected during 
admission or pre-operatively for a potential glioma.32,33 
Nevertheless, these studies do not recapitulate the rele-
vant timepoint within our study which suggested WBC 
counts collected prior to initiating ChemoRT as the most 
predictive of survival. To this point, Schernberg et al. simi-
larly assessed the utilization of CBCs during pretreatment 
for ChemoRT and found neutrophilia, advanced age, and 
more complete resection as features that independently 
decreased OS in a multivariate model, while steroid con-
sumption did not.34 These findings largely parallel our Cox 
regression models which found patient age, ChemoRT 
treatment regime, and WBC count as predictive of OS. 

It was noted as well that the median survival time in the 
WBC-Hi group was approximately 12 months while the 
WBC-Lo group was 18 months. Although the coverage 
of patients in our study ranges over the past decade, 
studies have reported the median survival of GB ranging 
from 12 to 15 months with ChemoRT treatment.35–37 In 
turn, it may be suggestive that patients with lower WBC 
load experience better survival outcomes than just those 
with neutrophilia declining more rapidly. Conversely, as-
sessing the cutoffs used for our WBC (Lo < 6.70; Hi > 11.90) 
and neutrophil (Lo < 4.40; Hi > 9.26) groupings, our low 
cutoffs are contained in the normal CBC reference range, 
but high cutoffs exceed the upper limit of normal,38 Thus 
patients with elevated WBC at ChemoRT planning may 
warrant more careful monitoring.

The relationship between survival and WBC count 
additionally raises applications to future therapeutic 
treatment of GBs- namely immunotherapies. Although 
effective in other solid tumors, the success of PD-1/
PD-L1 immune checkpoint inhibitors and dendritic cell 
vaccines have been marginal in GB.39–41 Contrary to be-
liefs that GBs were largely immune-privileged tumors, 
growing evidence supports robust recruitment of pro-
tumor-immune cell populations such as tumor-associated 
neutrophils and polymorphonuclear myeloid-derived 
suppressor cells.42,43 Thus, our poorly survived patients 
with elevated WBC/neutrophil load may underscore these 
biological mechanisms of tumor progression. Although 
future exploration is needed, such routine markers may 
be critical in identifying patients who are poor candidates 
for immunotherapy treatment due to unfavorable tumor 
microenvironment.

Fast Tapering of Steroids following Surgery May 
Influence Long Term Outcomes of Patients

An important consideration that should be highlighted in our 
study was the evidence that prior to ChemoRT treatment, 
a large variance in steroid tapering and functional status 
(KPS) was noted across our study groups. Namely, while 
studies have evidenced that WBC prediction is independent 
of corticosteroid use statistically, the biological influence of 
corticosteroids on both neutrophil and lymphocyte count 
has been long recognized.44,45 Alternative studies, like 
Dubinski et al., have directly implicated that the administra-
tion of dexamethasone induces leukocytosis which was as-
sociated with poor survival.46 Conversely, however, as our 
study found poorer KPS in the WBC-Hi group, these differ-
ences in steroid dosing may reflect more advanced disease. 
Nevertheless, although steroids have been long used to 
provide supportive therapy, these findings may suggest the 
need to set a more consistent standard of quickly tapering 
patients off steroids or identifying who benefits from a 
prolonged course.47 Our observed WBC counts and PD-L1 
measure may be suggestive of which patients in fact need 
to have steroid doses modified due to influence on immune 
cell activity. Studies have evidenced that the increased ad-
ministration of steroids promotes immune cell dysfunction, 
namely in T-cell compartments, by promoting increased ex-
pression of PD-L1 in the microenvironment that advances 
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dysregulation of the immune response.48,49 Although these 
findings may complicate the utilization of CBC measures for 
survival prediction, these observations, more importantly, 
underscore the need to better consider the use of steroids 
for the symptomatic relief of GB patients. Although ster-
oids may be used for patients with worse functional status, 
steroids may conversely worsen symptoms by causing im-
mune cell dysfunction.

Conclusions

The use of data derived from the EHR will remain a powerful 
resource. However, the sheer complexity of both collecting 
and assaying data to uncover novel research discoveries 
poses a challenge for future studies. The deliverables of 
our study include our standardized REDCap data collection 
form for evaluation of GB, an unsupervised analysis frame-
work to initially explore clinical data sets through PCA ei-
genvector visualization, and an automated image analysis 
pipeline for PD-L1 staining. Furthermore, the measure of 
CBC load at pretreatment for ChemoRT can be applied to 
identify patients at risk for unfavorable survival due to high 
WBC load coupled with elevated PD-L1 staining. However, 
deeper exploration and validation of these relationships 
and the tapering of steroids are important considerations in 
future studies of GB patient management.
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