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Abstract: Alzheimer’s disease (AD), a neurodegenerative disorder characterized by progressive
cognitive decline, is the most common form of dementia. Currently, there is no single test that can
diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis
is based on a combination of medical history, physical examination, cognitive testing, and brain
imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate
in physiological processes related to AD pathogenesis such as cell proliferation, immune response,
and neuronal and cardiovascular function. However, the identification and understanding of the
potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored.
Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed
with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics
and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed
between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were
found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs,
ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML
models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets.
These findings suggest that the expression profiles of lncRNAs could significantly contribute to
advancing personalized AD diagnosis in this community, offering promising avenues for early
detection and follow-up.

Keywords: Alzheimer’s disease; exosomes; long non-coding RNA; machine learning; personalized
medicine

1. Introduction

Alzheimer’s disease (AD) is the predominant form of dementia globally, representing
a significant public health concern due to its prevalence as a leading cause of disability
and dependency in the elderly. According to the World Health Organization (WHO), AD
accounts for 60–70% of reported cases of dementia and has significant economic impacts
in terms of direct medical costs, social care, and informal care, the latter represented by
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the loss of income of caregivers [1]. Moreover, the condition exerts a profound physical,
psychological, and social toll on both caregivers and families, underscoring the urgent need
for comprehensive understanding and effective interventions in addressing this complex
and challenging neurodegenerative disorder [1,2].

Over the last three decades, significant research efforts have been directed towards
elucidating the molecular pathophysiology of AD [3,4]. This understanding serves as
a foundation for developing novel therapeutic and diagnostic applications, ultimately
mitigating the impact of this debilitating disorder on patients and their caregivers [5,6].
Unfortunately, there is no single test that can diagnose AD, especially in understudied
populations and developing countries. Instead, diagnosis is based on a combination of
medical history, physical examination, cognitive testing, and brain imaging [7,8]. By
advancing our knowledge of the underlying mechanisms and introducing innovative
interventions and diagnostic tools, we can work towards improving the quality of life for
individuals affected by AD, including both patients and their support networks [9,10].

Exosomes, extracellular nanovesicles originating from endocytic pathways, have
emerged as a novel mechanism for intercellular molecular transport [11]. These vesicles
contain a diverse array of components including proteins, lipids, coding RNA, and non-
coding RNA (ncRNA) that can exert either beneficial or detrimental effects upon interaction
with target cells, depending on the context [12]. Exploring the role of exosomes in neurode-
generative disorders like Alzheimer’s disease (AD) not only enhances our comprehension
of cellular communication underlying both normal and pathological processes in the brain
but also sheds light on their involvement in critical functions such as synaptic plasticity,
myelin membrane biogenesis regulation, and localized transfer of proteins or nucleic acids
to specialized structures like neurons [13–15]. Furthermore, exosomes may create an en-
vironment conducive to amyloid fibril formation, thereby significantly influencing the
pathogenesis of AD [14]. Examination of blood exosome contents holds significant impor-
tance, especially given the formidable protection of the central nervous system (CNS) and
its limited accessibility. Therefore, it is possible to obtain information about its cells from
exosomes that cross the blood–brain barrier [16], which means that no invasive intervention
is required for its analysis [17].

ncRNAs represent an important part of the genome and regulate the expression
of genes that may be involved in AD [18]. In 2001, the Human Genome Project (HGP)
revealed that coding regions only represent approximately 2% of the entire genome [19].
Subsequently, the Encyclopedia of DNA Elements (ENCODE) project concluded that about
80% of the human genome is transcribed as non-protein-coding elements. Although it
was initially considered “junk DNA”, it was later determined that a large portion of
the non-coding regions were functional [20]. These ncRNAs are now known to play an
important role in the regulation of gene expression, many of which are involved in disease
pathogenesis [21]. Therefore, its study emerges as a novel option to understand it.

In AD, research in this field is just beginning [22,23]. In particular, microRNAs (miR-
NAs) are the most studied ncRNAs [22]. However, long ncRNAs (lncRNAs), which are
transcripts over 200 nucleotides in length with no apparent protein-coding capacity, have
received increasing attention and are expected to be novel epigenetic regulators of gene
expression at the transcriptional and post-transcriptional levels [24].

lncRNAs are widely expressed in the brain and affect the proliferation, survival,
metabolism, and differentiation of neuronal cells and are, therefore, considered to con-
tribute to the pathogenesis of AD [25]. Compelling evidence has shown that lncRNAs are
aberrantly expressed in AD progression and modulate beta amyloid beta (Aβ) peptide
formation, Tau hyperphosphorylation, neuroinflammation, and neuronal apoptosis [26,27].
However, we still need to identify new lncRNAs involved, analyze their differential ex-
pression, and clarify how they participate in the pathogenic pathways of AD. This new
information would allow us to establish lncRNAs as future biomarkers or therapeutic
targets for this form of dementia.
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As part of a large collaborative effort to elucidate the genetic landscape of genomic
variation that confers susceptibility to AD, since 2020, we have clinically, cognitively, and
neuropsychologically assesses a sample of individuals with sporadic AD (cases) and healthy
controls from Barranquilla, Colombia. In this study, we quantified the expression of 29,809
lncRNAs using microarrays and employed advanced bioinformatics, data analytics, and
Machine Learning (ML) techniques to identify lncRNAs differentially expressed between
cases and controls and evaluate their potential to determine the diagnosis of AD. Our
working hypothesis is that, since many of the risk variants associated with AD are found
in non-coding or intergenic regions [18], lncRNAs could be promising non-invasive and
reliable novel diagnostic markers for AD in this population [28].

2. Results
2.1. Subjects

We studied 15 individuals with a positive diagnosis of AD and 15 healthy controls.
Table 1 summarizes the demographic characteristics of all participants.

Table 1. Clinical and sociodemographic characterization of the study population.

Variable All
(n = 30)

Cases
(n = 15)

Controls
(n = 15) p

M (SD)
Age (years) 79.8 (8.7) 77.5 (8.5) 82.1 (8.6) 0.261
Age of onset
(years) 72.1 (7.2) 72.1 (7.2) - -

Weight (kg) 63.3 (15) 61.8 (15) 64.7 (15.4) 0.693
Height (m) 1.6 (0.07) 1.63 (0.08) 1.58 (0.06) 0.056
BMI (kg/m2) 24.5 (4.8) 23.1 (4.2) 25.9 (5.1) 0.161
MMSE 19.6 (9.6) 13.9 (9.5) 25.2 (5.6) 0.001
MoCA 15.3 (11.2) 5.5 (5.3) 25.9 (3) <0.001

Frequency (%)
Sex 1

Female 22 (73.3%) 11 (73.3%) 11 (73.3%)
Male 8 (26.7%) 4 (26.7%) 4 (26.7%)

Education level 0.262
None 2 (13.3%) 2 (13.3%) -
Elementary 13 (43.3%) 7 (46.7%) 6 (40%)
High school - -
Tertiary 15 (50%) 6 (40%) 9 (60%)
Postgraduate - -

Marital status 0.753
Not reported 5 (33.3%) 7 (46.7%)
Married 6 (40%) 5 (33.3%)
Widowed 4 (26.7%) 3 (20%)

SD: Standard deviation.

2.2. Differentially Expressed lncRNAs

In this study, the expression of 29,809 lncRNAs was quantified. A total of 647 were
found to be differentially expressed between subjects with AD and those in the control
group, according to the company’s default settings (|FC| > 0.5; Figure 1). Of these, 550
were found to be upregulated and 97 downregulated between the comparison groups.

Table 2 shows the top upregulated lncRNAs in our sample of individuals with AD.
Of these, the top-10 lncRNAs with a FC ≥ 1.5 are harbored in the TMEM186, PROX1-AS1,
AC109635.2, LINC02043, AC022031.2, AP003175.1, POT1-AS1, AL020993.1, XLOC_012031,
and CATG00000032665 genes.

Table 3 shows the top downregulated lncRNAs in our sample of individuals with AD.
Of these, the top-10 lncRNAs with a FC ≥ 1.5 are harbored in the AC073529.1, C5orf64,
G090124, TAB2-AS1, AC117382.2, G014791, AC007342.1, HTR2A-AS1, PTBP2, and IL7 genes.
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Interestingly, most of these differentially expressed lncRNAs, either up- or downregulated,
are intergenic and have a length >215 nt.
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Table 2. Characteristics of the lncRNAs upregulated in the AD group.

Transcript Gene ID P PFDR FC Length (nt)
Relationship to

Nearest
Coding Gene

ENST00000564869 TMEM186 7.7 × 10−6 0.229 1.78 561 Bidirectional
ENST00000608936 PROX1-AS1 2.6 × 10−5 0.234 1.73 900 Natural antisense
ENST00000529219 AC109635.2 5.5 × 10−5 0.234 1.55 500 Intergenic
ENST00000419745 LINC02043 6.9 × 10−5 0.234 1.55 1832 Intergenic
ENST00000589662 AC022031.2 8.2 × 10−5 0.234 3.26 513 Intergenic
ENST00000641383 AP003175.1 8.7 × 10−5 0.234 2.00 6658 Intergenic
ENST00000420172 AL020993.1 9.2 × 10−5 0.234 1.86 297 Natural antisense
TCONS_00024747 XLOC_012031 1.1 × 10−4 0.234 1.73 880 Intergenic
ENCT00000179246 CATG00000032665.1 1.1 × 10−4 0.234 1.51 1963 Natural antisense
ENST00000586145 LINC01255 1.4 × 10−4 0.253 1.82 463 Intergenic

ENST00000433746 ERICH3 1.4 × 10−4 0.253 1.52 5076 Sense with
overlap in exon

uc002dam.1 DEXI 1.5 × 10−4 0.253 1.59 2128 Bidirectional

ENST00000582092 SS18 1.7 × 10−4 0.253 1.71 215 Sense with
overlap in exon

ENST00000417218 AC244021.1 1.8 × 10−4 0.253 1.76 3662 Intergenic
ENST00000530595 AP000662.1 1.9 × 10−4 0.253 2.07 2790 Bidirectional
ENST00000420563 AC053503.2 2.0 × 10−4 0.253 1.70 1598 Bidirectional
ENST00000648691 AC020907.1 2.4 × 10−4 0.253 1.97 1429 Intergenic
TCONS_00013683 XLOC_006345 2.6 × 10−4 0.253 1.98 292 Intergenic
ENST00000515186 AC105345.2 2.6 × 10−4 0.253 2.07 664 Natural antisense
ENST00000522704 AC091939.1 2.6 × 10−4 0.253 2.57 691 Natural antisense
ENST00000602357 ASMTL-AS1 2.6 × 10−4 0.253 2.06 435 Natural antisense
ENST00000535567 FAM66C 2.7 × 10−4 0.253 1.55 724 Natural antisense
T081902 G018952 2.8 × 10−4 0.253 1.76 6159 Intergenic
ENST00000608506 LINC00635 2.8 × 10−4 0.253 1.76 482 Intergenic
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Table 3. Characteristics of the lncRNAs downregulated in the AD group.

Transcript Gene ID P PFDR FC Length (nt)
Relationship to
Nearest Coding

Gene

ENST00000433747 AC073529.1 2.6 × 10−4 0.253 1.54 1071 Intergenic
ENST00000507461 C5orf64 4.6 × 10−4 0.312 1.52 535 Intergenic
T380457 G090124 2.6 × 10−3 0.473 1.77 2072 Intergenic

ENST00000637865 TAB2-AS1 4.5 × 10−3 0.541 1.50 794 Intronic
antisense

ENST00000564748 AC117382.2 4.6 × 10−3 0.541 1.58 3151 Intergenic
T064254 G014791 4.7 × 10−3 0.541 1.59 685 Intergenic

ENST00000565073 AC007342.1 6.2 × 10−3 0.561 1.53 706
Sense with
overlap in

intron

ENST00000452352 HTR2A-AS1 6.4 × 10−3 0.561 1.55 384 Intronic
antisense

ENST00000476783 PTBP2 6.9 × 10−3 0.578 1.59 779
Sense with

overlapping in
exon

ENST00000519833 IL7 7.0 × 10−3 0.578 1.61 721 Bidirectional

ENST00000626729 LINC01232 7.3 × 10−3 0.578 1.77 2796 Intronic
antisense

ENST00000414600 SOX9-AS1 7.5 × 10−3 0.582 2.91 742 Natural
antisense

ENST00000591283 AC021683.2 8.1 × 10−3 0.601 1.54 4902 Intergenic

ENST00000645809 PCA3 8.2 × 10−3 0.601 1.95 3735 Intronic
antisense

NR_026562 C20orf24 1.0 × 10−2 0.628 2.15 1251 Bidirectional
ENST00000441809 AL359771.1 1.1 × 10−2 0.637 1.52 379 Intergenic
ENST00000650187 AL132996.1 1.1 × 10−2 0.642 1.59 1271 Intergenic

ENST00000553299 GNG2 1.2 × 10−2 0.642 1.51 1542
Sense with

overlapping in
exon

TCONS_00008636 XLOC_004141 1.3 × 10−2 0.652 1.51 231 Intergenic
T185193 G042518 1.5 × 10−2 0.685 1.55 4574 Intergenic

ENST00000512359 HHIP-AS1 1.5 × 10−2 0.690 1.52 646 Natural
antisense

T287007 G066968 1.5 × 10−2 0.690 2.49 9295 Intergenic
ENST00000585367 HSD52 1.6 × 10−2 0.701 1.58 401 Intergenic
ENST00000503266 LINC01365 1.6 × 10−2 0.701 1.69 550 Intergenic

T215907 G049958 1.7 × 10−2 0.711 2.73 6899 Natural
antisense

For further in silico analyses, the 18 differentially expressed lncRNA (10 up- and
8 down-regulated in the AD group compared to healthy controls) were selected accord-
ing to (1) the p-value and the highest FC and (2) the functional relevance with AD of the
lncRNA-associated genes (Table 4). These lncRNAs participate in key biological processes
related to AD pathogenicity, including neurogenesis and cell differentiation, proteostasis of
Aβ-peptide, neuroinflammation, neurite growth, synaptic plasticity, and apoptosis (Table 5).

Based on the 18 lncRNAs selected (Table 4), Principal Component Analysis (PCA) was
applied to visualize the joint distribution of all individuals in a multidimensional space and
evaluate the potential of these lncRNAs to differentiate individuals with AD from healthy
controls. Figure 2 shows the biplot for the first two principal components, which explain ~64%
of the total variance, along with the individuals (green [cases] and orange [controls] dots)
and the direction of the selected lncRNAs. Notably, control individuals are predominantly
clustered in the II and III quadrants, whereas individuals diagnosed with AD are primarily



Int. J. Mol. Sci. 2024, 25, 7641 6 of 25

located in the I and IV quadrants. This suggests that the selected lncRNAs have promising
potential for developing ML-based predictive models for AD diagnosis.

Table 4. Possible lncRNA-associated genes identified among the study groups.

Transcript
ID Gene ID Expression

in AD Cases

Associated
Transcrip-

tion
Gene ID Type Locus Strand

Number of
Base-Pairing
Interactions
Predicted by
RIblast [29]

Sum of
Local

Energies of
Base-Pairing
Interaction
(kcal/mol)

ENST00000564869TMEM186 Upregulated ENST00000566983 PMM2 mRNA chr16:8882680-
8941725 +

ENST00000608936PROX1-AS1 Upregulated ENST00000471129 PROX1 mRNA chr1:213983181-
213997225 +

ENST00000529219AC109635.2 Upregulated ENST00000222990 SNX8 mRNA chr7:2251770-
2314464 - 53 −1068.97

ENST00000419745LINC02043 Upregulated ENST00000262160 SMAD2 mRNA chr18:47808957-
47930559 - 87 −3068.26

ENST00000589662AC022031.2 Upregulated ENSG00000233695GAS6-AS1 lncRNA chr13:113815609-
113845746 - 40 −769.8

ENST00000453342POT1-AS1 Upregulated ENST00000357628 POT1 mRNA chr7:124822386-
124929981 - 1 −52.31

ENST00000420172AL020993.1 Upregulated ENST00000617146 SRCIN1 mRNA chr17:38530016-
38605930 - 1 −16.07

ENST00000433746ERICH3 Upregulated ENST00000326665 ERICH3 mRNA chr1:74568123-
74673792

uc002dam.1 DEXI Upregulated ENST00000646979 CIITA mRNA chr16:10922167-
10936388

ENST00000582092SS18 Upregulated ENST00000415083 SS18 mRNA chr18:26016253-
26090613

ENST00000433747AC073529.1 Downregulated ENST00000295851 ABI2 mRNA chr2:203328219-
203447723 + 6 −104.58

ENST00000637865TAB2-AS1 Downregulated ENST00000606202 TAB2 mRNA Chr6:149539777-
149699665 +

ENST00000564748AC117382.2 Downregulated ENST00000378505 RPGR mRNA chrX:38284409-
38327544 - 350 −10,193.80

ENST00000565073AC007342.1 Downregulated NM_001323610 RBL2 mRNA Chr16:53433977-
53491648 +

ENST00000452352HTR2A-AS1 Downregulated ENST00000378688 HTR2A mRNA Chr13:46831546-
46897076 -

ENST00000626729LINC01232 Downregulated ENST00000361558 MUC2 mRNA chr11:1074875-
1110511 + 223 −4588.2

ENST00000414600SOX9-AS1 Downregulated ENST00000645356 SOX9 mRNA Chr17:72121020-
72126416 +

ENST00000645809PCA3 Downregulated ENST00000428286 PRUNE2 mRNA chr9:76611377-
76906087 -

Figure 2. Biplot based on the expression levels of 18 lncRNAs differentially expressed.
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Table 5. Role of exosomal lncRNAs differentially expressed in AD pathogenicity.

lncRNA
(This Study) Target Gene AD Pathogenic Network

TMEM186 PMM2 Proteostasis of Aβ-peptide

PROX1-AS1 PROX1 Neurogenesis and cell
differentiation

AC109635.2 SNX8 Proteostasis of Aβ-peptide

LINC02043 SMAD2

Neurogenesis and cell
differentiation, proteostasis of
Aβ-peptide, and
neuroinflammation

AC022031.2 GAS6-AS1 *

Neurogenesis and cell
differentiation, proteostasis of
Aβ-peptide,
neuroinflammation, and
apoptosis

POT1-AS1 POT1 Proteostasis of the
phosphorylated Tau protein

AL020993.1 SRCIN1 Neurite growth and synaptic
plasticity

ERICH3 ERICH3
Negative response to
treatment of depression with
SSRIs

DEXI CIITA Neuroinflammation

SS18 SS18 Chromatin remodeling

AC073529.1 ABI2 Neurite growth

TAB2-AS1 TAB2
Proteostasis of Aβ-peptide,
neuroinflammation, and
apoptosis

AC117382.2 RPGR Ciliopathies

AC007342.1 RBL2 Cell cycle control

HTR2A-AS1 HTR2A Depression

LINC01232 MUC2 Alteration of the intestinal
barrier

SOX9-AS1 SOX9
Proteostasis of Aβ-peptide,
neuroinflammation, and
apoptosis

PCA3 PRUN2 Apoptosis
* Interacts with GAS6.

2.3. Protein–Protein Interactions (PPIs) between lncRNA-Associated Genes

Analysis of protein–protein interaction (PPI) revealed an established network between
the lncRNAs AC022031.2 and CAS6-AS1, which is potentially associated with the CAS6
gene. When STRING V11.5 (https://string-db.org/; accessed on 5 July 2023) was used with
all proteins coded by the 18 lncRNA-associated genes, we found statistically significance
evidence (P < 0.05 and an average clustering coefficient [ACC] > 0.7), as well as enrichment
in biological pathways and molecular functions related to AD in the PPI of proteins PMM2,
PROX1, SNX8, SMAD2, GAS6, POT1, SRCIN1, CIITA, SS18, ABI2, TAB2, RPGR, RBL2,
HTR2A, and SOX9. Results are shown in Table 6.

https://string-db.org/
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Table 6. PPI identified using the 18 lncRNA-associated genes.

Protein ACC PFDR

PMM2 0.885 3.27 × 10−11

PROX1 0.879 0.00216
SNX8 0.982 5.55 × 10−16

SMAD2 0.841 1.08 × 10−5

GAS6 0.719 6.45 × 10−7

POT1 1.000 <1.0 × 10−16

SRCIN1 0.772 0.00376
CIITA 0.900 1.41 × 10−8

SS18 1.000 <1.0 × 10−16

ABI2 1.000 <1.0 × 10−16

TAB2 0.923 7.16 × 10−9

RPGR 0.899 1.14 × 10−14

RBL2 0.968 1.11 × 10−16

HTR2A 0.824 4.42 × 10−8

SOX9 0.799 1.64 × 10−5

ACC: Average clustering coefficient. FDR: False discovery rate.

2.4. Biological Relatedness between lncRNA-Associated Genes and AD-Associated Genes

We used the Human Genome Connectome Database (HGC; https://hgc.rockefeller.
edu/; accessed on 5 July 2023) to quantify the biological relatedness between the top-10
AD-associated genes and those identified via lncRNA. A nominal statistically significant
biological relatedness was found between GAS6, the target gene of the AC022031.2—CAS6-
AS1 network, and the AD-associated genes CLU, APOE, ABCA7, and CD2AP (P < 0.05,
Table 7). Likewise, the gene SMAD2, the possible target gene of LINC02043, is biologically
related to APOE, CLU, BIN1, CD33, and ABCA7 (p < 0.05, Table 7), while HTR2A, the target
gene of the HTR2A-AS1 lncRNA, is biologically related to CLU and ABCA7. Similarly, RBL2
and CIITA are biologically related to CD33, while MUC2, SRCIN1, SS18, and POT1 are
biologically related to CR1, CD2AP, BIN1, and PICALM, respectively.

Table 7. Biological distance between lncRNA-associated genes and previously reported AD genes.

Gene ID
(This Study) AD Gene Distance P PFDR

GAS6 APOE 4.72 0.036 0.352
CLU 1.11 0.001 0.098
ABCA7 10.00 0.041 0.352
CD2AP 4.44 0.012 0.332

SMAD2 APOE 4.44 0.004 0.274
CLU 4.44 0.008 0.274
BIN1 4.72 0.015 0.333
CD33 5.69 0.023 0.352
ABCA7 10.00 0.023 0.352

HTR2A CLU 4.44 0.017 0.337
ABCA7 10.00 0.034 0.352

RBL2 CD33 5.69 0.037 0.352

CIITA CD33 4.72 0.008 0.274

MUC2 CR1 5.00 0.037 0.352

SRCIN1 CD2AP 6.03 0.048 0.404

SS18 BIN1 5.97 0.029 0.352

POT1 PICALM 8.63 0.048 0.352

https://hgc.rockefeller.edu/
https://hgc.rockefeller.edu/
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2.5. ML-Based Diagnostic Assessment

We evaluated the performance of 14 distinct Machine Learning (ML) algorithms in
predicting AD diagnosis based on the 18 previously selected lncRNAs (Tables 4 and 5). The
balanced accuracy of these ML algorithms is shown in Figure 3. Notably, the svmLinear2,
svmLinear, and svmPoly algorithms demonstrated exceptional performance, with accuracy
values exceeding 98% in the training dataset. Among these, the svmLinear2 algorithm
emerged as the top performer, showcasing its potential in accurately diagnosing AD using
lncRNA-based data.
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Analysis of the ROC curve for the svmLinear2 ML algorithm indicates that this model
provides a high ability to discriminate individuals with AD from healthy controls (AUC
> 0.9; Figure 4). This algorithm was found to have competitive values for sensitivity,
specificity, accuracy, PPV, NPV, and lift (Figure 4b), which strongly suggests that this
algorithm is a potential tool for early diagnosis of AD in the clinical setting.

Variable importance analyses reveal that combining the expression of the 18 selected
lncRNAs with demographic variables, such as gender, age, and educational level, enhances
the predictive power for AD diagnosis; two lncRNAs (ENST00000608936 harbored in
PROX1-AS1 and ENST00000582092 harbored in SS18) are the most important predictors
(Figure 5). These findings emphasize the significant role that these specific lncRNAs play in
AD diagnosis, even when accounting for demographic factors that may influence disease
risk and progression.
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Figure 5. Importance of selected lncRNAs for predicting AD diagnosis with the svmLinear2 ML
algorithm.

As complementary analyses, we utilized the One-Rule (OneR) [30] ML algorithm
to identify the most relevant lncRNA for predicting AD diagnosis in our sample. Our
results indicate that the lncRNA PROX1-AS1 (ENST00000608936) is the main driver of AD
diagnosis in our sample (Table 8). Interestingly, using the svmLinear2 ML algorithm with
this lncRNA showed poor predictive power (not reported).
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Table 8. Accuracy of the OneR ML algorithm when each selected lncRNA is used for predicting AD
diagnosis.

lncRNA Accuracy

PROX1-AS1 (ENST00000608936) 86.36%
AC022031.2 (ENST00000589662) 86.36%
POT1-AS1 (ENST00000453342) 86.36%
TMEM186 (ENST00000564869) 81.82%
ERICH3 (ENST00000433746) 81.82%
SS18 (ENST00000582092) 81.82%
AC073529.1 (ENST00000433747) 81.82%
AC109635.2 (ENST00000529219) 77.27%
AL020993.1 (ENST00000420172) 77.27%
DEXI (uc002dam.1) 77.27%
PCA3 (ENST00000645809) 77.27%
LINC02043 (ENST00000419745) 72.73%
AC117382.2 (ENST00000564748) 72.73%
AC007342.1 (ENST00000565073) 72.73%
SOX9-AS1 (ENST00000414600) 72.73%
HTR2A-AS1 (ENST00000452352) 63.64%
LINC01232 (ENST00000626729) 63.64%
TAB2-AS1 (ENST00000637865) 59.09%

However, by combining PROX1-AS1
(ENST00000608936) and AC073529.1 (ENST00000433747), we observed exceptional perfor-
mance for predicting AD diagnosis in our sample (Figure 6).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 26 
 

 

However, by combining PROX1-AS1 (ENST00000608936) and AC073529.1 
(ENST00000433747), we observed exceptional performance for predicting AD diagnosis 
in our sample (Figure 6). 

 
Figure 6. (a) ROC curve and (b) performance measures for the svmLinear2 ML model using the 
expression levels of the OneR-derived lncRNAs for predicting AD diagnosis. 

3. Discussion 
Alzheimer’s disease (AD) is the most common type of age-related dementia world-

wide [31], characterized by the development of extracellular plaques formed by amyloid 
beta (Aβ) peptides and neurofibrillary tangles composed of hyperphosphorylated Tau 
protein (p-Tau). However, in clinical trials, reducing the production of Aβ peptides in the 
brain did not halt cognitive decline or improve the quality of life of AD patients. Hence, 
other pathogenic mechanisms have been proposed, suggesting a multifactorial nature of 
AD [32]. Although research studies have identified genes associated with sporadic AD 
[33], understanding the regulation of gene expression would allow us to better compre-
hend the pathogenic network of the disease. 

Non-coding RNAs (ncRNAs) have been shown to play an important role in the reg-
ulation of gene expression, many of which are involved in the pathogenesis of disease. 
[21]. In this study, we characterized the differential expression profile of long ncRNA 
(lncRNA) contained in circulating exosomes in a group of individuals with AD and a con-
trol group to clarify how they participate in the pathogenic pathways of the disease. This 
information would help to establish lncRNAs as future biomarkers or therapeutic targets 
for AD. 

We identified a total of 647 lncRNAs to be differentially expressed between the com-
parison groups according to the company’s default settings (Figure 1). Of these, 550 were 
upregulated and 97 were downregulated in patients with AD. Among the top 20 lncRNAs 
differentially expressed within each group, only PCA3 has previously been associated 
with AD [34]. Through in silico analysis, we predicted that selected lncRNAs (Table 4) 
interact with possible target genes and impact their participation in different pathways 
that integrate the pathogenic network of AD (i.e., neurogenesis, cell differentiation, prote-
ostasis of Aβ peptide and p-Tau, neuroinflammation, chromatin remodeling, neurite out-
growth, synaptic plasticity, apoptosis, and cell cycle control) and situations favoring AD 

Figure 6. (a) ROC curve and (b) performance measures for the svmLinear2 ML model using the
expression levels of the OneR-derived lncRNAs for predicting AD diagnosis.

3. Discussion

Alzheimer’s disease (AD) is the most common type of age-related dementia world-
wide [31], characterized by the development of extracellular plaques formed by amyloid
beta (Aβ) peptides and neurofibrillary tangles composed of hyperphosphorylated Tau
protein (p-Tau). However, in clinical trials, reducing the production of Aβ peptides in the
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brain did not halt cognitive decline or improve the quality of life of AD patients. Hence,
other pathogenic mechanisms have been proposed, suggesting a multifactorial nature of
AD [32]. Although research studies have identified genes associated with sporadic AD [33],
understanding the regulation of gene expression would allow us to better comprehend the
pathogenic network of the disease.

Non-coding RNAs (ncRNAs) have been shown to play an important role in the regula-
tion of gene expression, many of which are involved in the pathogenesis of disease. [21]. In
this study, we characterized the differential expression profile of long ncRNA (lncRNA)
contained in circulating exosomes in a group of individuals with AD and a control group
to clarify how they participate in the pathogenic pathways of the disease. This information
would help to establish lncRNAs as future biomarkers or therapeutic targets for AD.

We identified a total of 647 lncRNAs to be differentially expressed between the com-
parison groups according to the company’s default settings (Figure 1). Of these, 550 were
upregulated and 97 were downregulated in patients with AD. Among the top 20 lncRNAs
differentially expressed within each group, only PCA3 has previously been associated
with AD [34]. Through in silico analysis, we predicted that selected lncRNAs (Table 4)
interact with possible target genes and impact their participation in different pathways that
integrate the pathogenic network of AD (i.e., neurogenesis, cell differentiation, proteostasis
of Aβ peptide and p-Tau, neuroinflammation, chromatin remodeling, neurite outgrowth,
synaptic plasticity, apoptosis, and cell cycle control) and situations favoring AD develop-
ment (i.e., depression, ciliopathies, and alteration of the intestinal barrier) (Table 5). Based
on the selected lncRNAs, we proposed and validated different ML-based predictive model
for AD diagnosis (Figures 3, 4 and 6). Our results suggest that some of these lncRNAs lead
to remarkable predictive power to distinguish individuals and those with AD, showing
promise in the clinical setting.

The IPP network of the PMM2 gene, which codes for the phosphomannomutase
2 protein (P = 0.00056) and guanosine diphosphate mannose precursor (GDP-manosa)
(P = 1.62 × 10−8), participates in Aβ-peptide proteases in the brain. GDP-mannose is
required for the synthesis of dolichol phosphate-mannose involved in the N-glycosylation
of proteins [35]. An increase in dolichol phosphate (without addition of the oligosaccharide)
has been demonstrated in the brain of subjects with AD [36], which could lead to the
accumulation of Aβ peptide [36], since it is related to the decrease in P-glycoprotein
(P-gp), which participates as an ejector pump of this peptide across the blood–brain barrier
(BBB) [37]. Other IPP networks associated with Aβ proteasome include networks with
proteins encoded by the SNX8, SMAD2, GAS6, TAB2, and SOX9 genes.

SNX8 is part of the retromeric protein complex (P = 8.15 × 10−17), which is an essential
part of the endosomal system (P = 2.31 × 10−9) [38], participating in the redistribution of
APP from the Golgi apparatus to the cytoplasmic membrane, where soluble fragments
are generated through cleavage of this protein by α-secretases [39]. SMAD2, a protein
that participates in the signaling pathway of transforming growth factor beta 1 (TGF-β1)
(P = 1.92 × 10−9), provides a stimulus for microglia to achieve phagocytosis of Aβ pep-
tides [40]. Likewise, the ligands of the TAM receptors GAS6 and PROTS bind through their
N-terminal region to phosphatidylserine (P = 9.58 × 10−5) present in phagocytic targets
such as apoptotic bodies (P = 0.0037) or in the Aβ peptides. In turn, they bind through
their C-terminal region to TAM receptors present in microglial phagocytes [41]. TAB2
is required for the canonical activation of the Nuclear Factor Kappa B (NF-κB) signaling
pathway, which promotes the transcription of genes such as BACE1 and SOX9, among
others [42]. The increase in the transcription of BACE1 leads to increased APP processing
via the amyloidogenic pathway [43], while SOX9 may play a role in Aβ deposition in
astrocytes and responding to the presence of amyloid plaque in the brain [44,45].

While microglia activation is necessary for Aβ-peptide phagocytosis, their chronic
overactivation promotes migration and clustering of these cells into amyloid plaques,
thereby constantly releasing toxins, which actively contribute to the progressive neurode-
generation characteristic of AD [46]. In this regard, the modulation exerted by TGF-β1-
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Smad2/Smad3, which promotes Aβ peptide clearance by microglial phagocytosis, becomes
necessary. However, it has also been shown to regulate microglial migration toward Aβ

plaques with consequent modulation of the inflammatory response [40,47]. Likewise, the
GAS6 IPP network involving TAM receptors (Tyro3, Axl, and Mer) and other ligands
participates in the inhibition of the propagation of pro-inflammatory signals resulting from
Toll-like receptor (TLR) stimulation and induces the release of anti-inflammatory molecules
such as interleukin-10 (IL-10) and transforming growth factor β (TGF-β) [48,49].

In contrast, the IPP network of TAB2 and SOX9 and the IPP network of CIITA promote
the inflammatory response in the brain, since NF-κB (activated by the MAP3K7/TAK1/TAB2/
TAB3/TAB2/TAB3 complex) promotes the inflammatory response in the brain and the
transcription of coding genes for inflammatory cytokines (such as IL-1β, IL-6, IL-12,
and TNF [50]) and SOX9, which could play an important role in the activation of as-
trocytes and release of chondroitin sulfate pro-teoglycans that contribute to glial scar
formation in AD individuals [51]. The CIITA IPP network regulates the biosynthetic pro-
cess of Major Histocompatibility Complex (MHC) class II on the surface of innate immune
cells in the brain (p = 0.0170). This favors the presentation of Aβ peptide as an antigen
(p = 6.02 × 10−13), further enhancing the pro-inflammatory phenotype of microglia.

On the other hand, the IPP networks of SMAD2 and GAS6, and that of PROX1, partici-
pate in neurogenesis and cell differentiation. In this case, TGFβ/activin
(P = 1.52 × 10−6)-regulated R-Smads (P = 4.48 × 10−6), Smad2 and Smad3, target specific
genes for transcriptional regulation (P = 4.27 × 10−5), thereby promoting neurogenesis from
neural stem cells in the subgranular zone of the hippocampus. Newly generated neurons
migrate steadily to the granule cell layer and integrate into existing neural circuits [52,53].
In turn, the binding of GAS6 and PROTS to TAM receptors promotes neural stem cell prolif-
eration, differentiation into mature neurons, and migration and cell survival through
the regulation of neurotrophin expression, especially nerve growth factor expression
(P = 0.0028) [54,55], while the PROX1 gene, whose transcription is induced by activa-
tion of the Wnt/β-catenin pathway, is required for proper differentiation of granule cells (P
= 0.0281) during embryonic and adult neurogenesis in the hippocampus, but not for the
maintenance of mature granule cells [56].

We found that the ABI2 network, which is part of the Wiskott–Aldrich syndrome
protein complex and is a protein homologous to verprolin (WAVE) [57], participates in
the control of neurite outgrowth by activating the Arp2/3 complex (P = 3.77 × 10−16) to
promote the formation of new actin filaments (P = 5.40 × 10−12), which allow the cre-
ation of branched networks that constitute the morphogenesis of the dendrite. Similarly,
p140Cap can maintain dendritic spine (DE) morphology by locally regulating actin poly-
merization through interaction with postsynaptic density components, for example, by
directly inhibiting Src kinase activation (P = 0.0493) and binding to the Citron-N protein
(P = 0.0493) [58].

The SRCIN1 IPP network was also found to be involved in the synaptic transmission
process (P = 0.0236). According to GO annotations on cellular components, the proteins that
interact with p140Cap are in the membranes of synaptic vesicles (p = 0.0066). p140Cap con-
trols synaptic plasticity in differentiated neurons and regulates GABAergic synaptogenesis
and the development of hippocampal inhibitory circuits [59].

Pathological alterations in AD involve an abnormal apoptotic cascade in susceptible
brain regions. Dysregulated apoptosis ends with abnormal neuronal loss, which is consid-
ered as a primary event that may precede the other events of AD progression [60]. In this
study, IPP networks suggest that proteins encoded by RBL2, TAB2, SOX9, and GAS6 genes
are involved in apoptosis.

According to KEGG analysis, the RBL2 IPP network participates in the cell cycle
(P = 4.31 × 10−19) and senescence (P = 1.84 × 10−18) due to their biological functions re-
lated to transcription regulation (P = 0.0059) and DNA damage response (P = 3.12 × 10−5).
Several Rb family proteins, including pRb and p130 (RBL2), have been shown to suppress
the cell cycle by controlling the G1/S transition of the mitotic cell cycle (p = 0.00029) in dif-
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ferentiated neurons. However, in neurodegenerative diseases such as EAE, this process is
disrupted when Rb expression decreases or dissociates from EF2 transcription factors, forc-
ing mature neurons to re-enter the cell cycle [55]. The NF-κB signaling pathway, activated
through the formation of a complex between MAP3K7/TAK1 kinase and TAB2 [42], has
also been linked to apoptosis, since NF-κB modulates the expression of some protein-coding
genes such as p53, c-Myc, cyclin D1, Bcl, and BAX [61]. Thus, under-expression of the SOX9
gene through the NF-κB signaling pathway increases the expression of the anti-apoptotic
Bcl-2 protein and decreases the expression of the pro-apoptotic Bax protein [44]. In contrast,
the GAS6 IPP network exerts a negative regulation of the dendritic cell apoptotic process
(P = 0.0037) by counteracting the detrimental intracellular Ca2+ increase induced by Aβ

and favoring the uptake of apoptotic bodies by macrophages [62].
Different epigenetic mechanisms, including chromatin remodeling, may be altered in

neurodegenerative disorders such as AD [63]. SS18 is a component of the GBAF subcomplex
belonging to the SWI/SNF (SWItch/Sucrose Non-Fermentable) family (P = 5.42 × 10−29),
which remodels chromatin through histone acetylation (P = 0.0142). Alteration of this
process is involved in cell differentiation, apoptosis, inflammatory reaction, neuronal
plasticity, and synaptogenesis [64]; these pathways integrate the metabolic network of AD.

Based on emerging evidence indicating a correlation between these processes and
the pathogenesis of AD, three potential target genes are postulated to be involved in the
development of depression, ciliopathies, and intestinal barrier disruption [65–67]. Thus,
the possible involvement of the HTR2A PPI network in the development of depression
was identified. This network participates in the serotonin receptor signaling pathway
(P = 0.00082), which regulates hippocampal activity under physiological conditions [68]. Its
alteration has been shown to be related to mood disorders such as anxiety and depression,
learning deficits, memory impairment, and, consequently, to AD [69]. The ERICH3 gene,
for which no PPI network could be established, is associated with a negative response to
the treatment of depression with selective serotonin reuptake inhibitors (SSRIs) in subjects
with AD [70]. On the other hand, the RPGR IPP network participates in the assembly of
non-motile cilia (P = 0.0014) and in the trafficking of ciliary proteins (P = 3.41 × 10−12),
therefore, this network could be determinant for the correct functioning of cilia [71]. Al-
terations in these processes, collectively referred to as ciliopathies, have been associated
with aging and age-related brain disorders [66]. Conversely, the MUC2 gene, for which an
IPP network could not be established, is implicated in intestinal barrier integrity. This is
significant as disruptions in intestinal permeability can lead to the translocation of micro-
bial exudates, lipopolysaccharides (LPSs), and amyloid molecules into the bloodstream,
facilitating their transport to the brain. Subsequently, this process triggers the activation of
microglia and astrocytes, underscoring the intricate relationship between gut health and
neuroinflammation in the context of AD [72]. In addition, deregulated MUC2 expression
contributes to the alteration of the intestinal microbiota, which has been linked in recent
years to the development of AD [73].

Current diagnostic approaches for AD are mainly based on neuropsychological assess-
ments, brain imaging, and the detection of β amyloid-1-42 peptide (Aβ42), total Tau protein,
and hyperphosphorylated Tau protein (p-Tau) in cerebrospinal fluid (CSF) [74,75]. However,
these tests are expensive and invasive [76,77] and have low sensitivity and specificity [78].
Late diagnosis of AD in clinical settings has raised concerns, emphasizing the need for cost-
effective and accessible blood biomarkers to enable early detection of AD, before significant
brain damage occurs. Early diagnosis would allow patients to benefit more from available
treatments, potentially slowing disease progression and improving outcomes [79].

ML algorithms have been used for the design of predictive algorithms for different
diseases, including AD [80]. Jo et al. demonstrated, using meta-analysis, that studies that
evaluated the role of artificial intelligence have accuracy values of 80% and 90% for predicting
the evolution of MCI to AD and for classifying the type of AD, respectively [81]. Similarly,
Rhodius-Master et al. studied how the combination of different neuropsychological tests could
help identify individuals with MCI who were likely to develop clinical progression to AD [82].
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Other researchers have included genetic and/or biochemical variables for disease prediction
to improve the performance of these tools [83]. In Colombia, studies have identified ADAOO,
AD status (early vs. late) and cognitive decline modifier genes in individuals with familial
and sporadic AD (REFs). Furthermore, performance of different ML algorithms to predict
ADAOO using demographic and genetic information has also been explored in individuals
with familial and sporadic AD. In the latter, GPR45-rs35946826 and MAGI3-rs61742849 exhibit
good predictive performance for the age of onset [6].

Several studies have integrated ML algorithms and lncRNAs signatures to predict
prognosis, follow-up, and diagnosis in AD. For instance, a 2020 study assessed lncRNA
expression profiles using data from the Gene Expression Omnibus (GEO) database. The
authors found 47 differentially expressed lncRNAs between 57 AD samples and 57 healthy
controls and ultimately applied a panel of 9 lncRNAs to train a ML model, which achieved
an accuracy of 87.7% and 87.6% in the training and testing datasets, respectively, for classify-
ing individuals with AD and healthy controls [84]. On the other hand, an SVM model using
a signature of five lncRNAs predicts AD prognosis based on competing endogenous RNA
networks and achieves an accuracy of 69% in a 10-fold cross-validation on 589 samples [85].
When this ML mode is tested on an independent dataset of
161 samples, the accuracy improved to 78.3% with sensitivity and specificity values of
77% and 79.7%, respectively [85]. More recently, a study developed an SVM-based model
integrating lncRNA sequence and structure features to predict disease-related lncRNAs.
This ML model achieves an F1 score of 76% in identifying lncRNAs associated with various
diseases, including AD [86].

Our study evaluated the accuracy of 14 ML algorithms used to predict the diagnosis of
sporadic AD from demographic data and the expression levels of the 18 selected lncRNAs
(Figure 3). The svmLinear2, svmLinear, and svmPoly ML algorithms were found to provide
accuracy rates > 98%. Among them, the svmLinear2 algorithm was the most accurate
(Figure 3). Variable importance analysis (Table 8) revealed that the best predictors of AD in
our sample were PROX1-AS1 (ENST00000608936) and SS18 (ENST00000582092). These
results are in line with those of Sharma et al., who identified other lncRNAs with remarkable
predictive performance to dissect individuals with AD from healthy controls based on
microarray studies of the prefrontal cortex, medial temporal gyrus, hippocampus, and
entorhinal cortex [87]. The data from this study, along with previous findings, suggest that
lncRNAs are promising predictors of AD. The predictive model developed in this research
represents a valuable clinical tool for anticipating the development of AD dementia. This
model enables the identification of individuals at risk, allowing for the implementation
of preventive strategies to delay the onset and/or progression of the disease in affected
individuals.

4. Materials and Methods
4.1. Subjects

Our study is of the case/control type. Here, individuals diagnosed with sporadic AD,
recruited at the Instituto Colombiano de Neuropedagogía (ICN), Barranquilla, Colombia,
were considered as “cases”. A total of 15 individuals comprised this group. All individuals
were >65 years of age, met the diagnostic criteria for AD according to the Diagnostic
Statistical Manual (DSM) version V (DSM-V) [88] and had a Mini-Mental State Examination
(MMSE) [89] between 0 and 18 points. Individuals within this group with familial AD (i.e.,
caused by a single-gene mutation and exhibiting early signs and symptoms), the presence of
other neurological disease (i.e., cerebrovascular disease, frontotemporal dementia, dementia
due to Lewy bodies, Parkinson’s disease, etc.), major psychiatric diseases (i.e., psychosis,
schizophrenia, personality disorders, etc.), and psychoactive substance use or excessive
alcohol consumption, as well as those unable to complete the clinical studies, were excluded.

On the other hand, 15 individuals comprised the “control” group, which corresponds
to healthy non-family volunteers aged >65 years without suspected AD and a MMSE
between 19 and 29 points. In this group, individuals with depression, mild cognitive
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impairment (MCI) or dementia, the presence of any neurological disorder, major psychiatric
illnesses, and use of psychoactive substances or excessive alcohol consumption were
excluded. We also excluded healthy participants unable to complete the clinical studies.

The average age at study entry was 79.8 ± 8.7 years in all participants, 77.5 ± 8.5
years in the group of cases, and 82.1 ± 8.6 years in the healthy controls group. The
AOO in individuals with AD was 72.1 ± 7.1 years. We found no statistically significant
difference between groups in the age at study entry, weight, height, BMI, sex distribu-
tion, marital status, or educational level (Table 1). However, these groups differed in the
MMSE and MoCA, with AD individuals exhibiting lower values than healthy controls
(MMSE: 13.9 ± 9.5 vs. 25.2 ± 5.6, P = 0.001; MoCA: 5.5 ± 5.3 vs. 25.9 ± 3, P < 0.001).

4.2. Neuropsychological Assessment

After explaining to potential participants what the study consisted of and obtaining
informed consent, the ICN team determined the eligibility of the candidates based on the
results of the Montreal Cognitive Assessment (MoCA) [90] and the inclusion and exclusion
criteria previously described. The MoCA is a screening test to identify possible cases of
mild cognitive impairment (MCI), possible dementia, and healthy subjects. Subsequently,
an exhaustive neuropsychological evaluation was performed, which included the following
tests: Montreal Cognitive Assessment Test (MoCA) [90], Boston Denomination Test [91,92],
Rey–Osterrieth Complex Figure [93], Rey Auditory Verbal Learning Test (RAVLT) [94],
Trail Making Test (TMT) [95,96], Symbol Digit Modality Test (SDMT) [97], Stroop Color
and Word Test [98], Token Test [99], Benton’s Visual Retention Test (BVRT) [100], Clock
Drawing Test [101], Memory Scale subtest of the Wisconsin Card Testing Test [102], Geriatric
Depression Screening Test [103], Global Deterioration Scale (GDS) [104], Barthel Functional
Index [105], and Neuropsychiatric Inventory [106]. Finally, an electroencephalogram was
performed for all participants.

Additional data for each participant such as age at the beginning of the study, sex,
educational level, marital status, weight, and height were also recorded through the clinical
history. In all participants diagnosed with AD, the age of onset (AOO) of the disease was
defined as the age at onset of symptoms according to previous research [107,108]. AOO was
determined during anamnesis with information provided by the patients or their relatives
and by seeking confirmation from various sources, such as the neurologist’s assessment and
neuropsychological evaluations. This strategy has been shown to be very accurate [109].

4.3. RNA Isolation

Once the clinical selection and characterization of the participants was completed,
blood samples were collected for the isolation of circulating exosomes. A total of 6 mL
of blood was obtained by conventional venipuncture in tubes, without additive, for each
participant. The tubes were centrifuged at 4000 RPM for 10 min to obtain serum. The serum
was centrifuged at 5000 RPM for 30 min to remove any remaining vesicles or detritus. The
supernatant was subsequently transferred without disturbing the pellet to a new Eppendorf
tube and placed on conventional ice until use.

A Total Exosome Isolation Reagent commercial kit (catalog #4478360, Thermo Fisher
Scientific, Inc., Walthman, MA, USA) was used to isolate the exosomes following the
manufacturer’s instructions with minor modifications standardized at the laboratories of
Universidad del Norte, Barranquilla; 1000 µL of serum and 200 µL of the reagent were
transferred to an Eppendorf tube. This mixture was homogenized in a vortex for 1 min to
obtain a cloudy solution. This mixture was subsequently incubated at −20 ◦C for 30 min at
rest and in a vertical position, taking care not to mix during or after incubation. Later, the
mixture was centrifuged at 10,000 RPM for 30 min at room temperature. The supernatant
was aspirated with a micropipette and discarded in order not to alter the pellet, since it
contained the exosomes. The pellet was resuspended adding 200 µL of PBS 1× and, thus,
ready for further studies. Resulting exosomes were characterized by scanning electron
microscopy (SEM). For this purpose, exosomes were encapsulated with nanodiamond
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particles, and their sizes were meticulously confirmed, with measurements revealing a
maximum diameter of 160 nm (Figure S1, Supplementary Material).

4.4. Exosomal RNA Extraction

For the extraction of RNA contained in exosomes, a technique based on the acid
phenol–chloroform method was standardized in the laboratory of the Universidad del
Norte. To resuspended exosomes (200 µL), we added 200 µL of a denaturing solution 2×
and proceeded to vortex mix for 1 min. Then, this mixture was incubated at −20 ◦C for
5 min before adding 400 µL phenol–chloroform acid, subsequently vortexed for 1 min, and
then centrifuged for 13 min at 12,000 RPM at room temperature in order to separate the
mixture into aqueous and organic phases. This step was repeated when the interface was
not compact.

Furthermore, the aqueous (upper) phase was carefully removed without disturbing
the lower phase and interphase and then transferred to a new tube. Considering the
volume recovered, 80% isopropanol and 20% 3M sodium acetate pH 5.2 were added and
homogenized. The sample was frozen overnight at −20 ◦C in an upright position, taking
care not to mix during or after freezing. At the end of the incubation time, the mixture
was centrifuged at 14,000 RPM for 10 min at room temperature, discarding the supernatant
by inversion. Seventy-five percent ethanol (two volumes with respect to the amount of
isopropanol/sodium acetate used) was added to the pellet and centrifuged at 10,000 RPM
for 10 min at room temperature. The supernatant was discarded by inversion and the tubes
were allowed to dry upside down for 10 min. Extracted RNA was resuspended with 50 uL
of RNAsase-free water and then subjected to DNase I (catalog #EN0521, Thermo Fisher
Scientific, Inc., USA) following the manufacturer’s instructions. Finally, the concentration
and indexes of the readings obtained with the optical densities (OD) 260/230 and 260/280
were measured in a NanoDrop 2000 (Thermo Fisher Scientific, Inc., USA) and matched to
the RNA quality indexes.

4.5. lncRNA Microarray Study

For lncRNA identification and differential expression analysis, the 30 samples
(15 cases with AD and 15 healthy controls) were sent to Arraystar, Inc (Rockville, MD,
USA), where RNA quality control and complementary RNA (cRNA) synthesis, labeling,
and hybridization were performed according to Agilent’s single-color, microarray-based
gene expression analysis protocol (Agilent Technologies, Santa Clara, CA, USA) with minor
modifications.

4.5.1. Quality Control

Before starting the microarray study, the quality, purity, and concentration of the
exosomal RNA samples obtained were corroborated. To establish that the RNA is pure,
the OD260/280 ratio should be close to 2.0, while the OD260/230 ratio must be >1.8. RNA
integrity was assessed by denaturing agarose gel electrophoresis to detect clear bands
of ribosomal RNA (rRNA) 28S and 18S with a 28S:18S intensity ratio close to 2:1, which
indicates that RNA is intact.

4.5.2. Complementary RNA Synthesis and Tagging

First, each sample was subjected to retrotranscription to obtain complementary DNA
(cDNA); this was amplified and transcribed back to its complementary RNA (cRNA). In
this step, amplification and incorporation of cyanine 3 (Cy3) fluorescent dye labeling can
be achieved simultaneously along the entire length of the 3′ unbiased transcript using a
random priming method (Arraystar Flash RNA Labelling Kit, Arraystar, Inc., Rockville,
MD, USA). The labeled cRNAs were purified with the RNeasy mini kit (Qiagen, Hilden,
Germany). In this step, it was possible to eliminate reagent residues and the excess of
cyanine not incorporated. As a control of the amplification and labeling process of the
samples, the concentration of the cRNA obtained and the rate of cyanine incorporation or
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specific activity (pmol of Cy3 per µg cRNA). Hybridization was allowed to continue if the
cRNA concentration was >1.65 µg and the specific activity was >9 pmol of Cy3 per µg of
cRNA. Otherwise, cRNA preparation was repeated.

4.5.3. Hybridization and Microarray Scanning

A total of 1 µg of each labeled cRNA was fragmented by the addition of 5 µL of
blocking agent 10× and 1 µL of fragmentation buffer 25×. The mixture was heated to 60 ◦C
for 30 min, and then 25 µL of hybridization buffer 2× GE was added to dilute the labeled
cRNA; 50 µL of hybridization solution was dispensed onto a hybridization plate, which
was then assembled with a lncRNA expression microarray plate. The plates were incubated
for 17 h at 65 ◦C in an Agilent hybridization oven. The hybridized arrays were washed and
then scanned using an Agilent scanner (equipment #G2505C; Agilent Technologies, Santa
Clara, CA USA).

4.5.4. lncRNA Microarray and Data Normalization

Arraystar Human LncRNA Microarray v5.0 was used in this study. This microarray
quantifies the expression of 39,317 lncRNAs (8393 gold-standard lncRNAs and 30,924
reliable lncRNAs). Arraystar, Inc has high-quality, proprietary lncRNA transcriptome
databases, which compile lncRNAs through major public databases and repositories. Each
transcript is identified with a splice probe. In this case, 60,491 probes of 60 nt length were
used. For hybridization quality control, positive probes and negative probes for domestic
genes, designed by the company, were used. Hybridization signals on the microarray
were read using the Agilent’s Feature Extraction software, version 11.0.1.1. Data were
normalized using quantile normalization [110] and expression values were adjusted using
a linear model, as implemented in GeneSpring GX v12.1 (Agilent Technologies).

4.5.5. Identification of Differentially Expressed lncRNAs

After normalization, lncRNAs that were flagged as present or marginal (“all-target
value”) in at least 15 out of 30 samples were chosen. Differentially expressed lncRNAs
between cases and controls were determined based on the p-value of a two-sample t-test. To
control false positives, these p-values were corrected using the false discovery rate (FDR) [111].
Thus, FDR-corrected p-values below a Type-I error of 5% (PFDR < 0.05) were considered
statistically significant. lncRNAs were also filtered using a Fold Change [FC] ≥1.5.

4.5.6. lncRNA Annotation

Functional analysis of differentially expressed exosomal lncRNAs was performed
using proprietary, high-quality transcriptome and lncRNA databases. Thus, information
was obtained on lncRNA transcription unit identifications, including their length (number
of nucleotides), gene identifications and symbols, loci, positions in relation to neighbor-
ing protein-coding genes (intronic or exonic overlap, sense, antisense, bidirectionality, or
whether they are intergenic transcripts), functional molecular mechanisms, association
with cells or tissues, and subcellular locations. In addition, scientific publications in the
Web of Science, PubMed, and SCOPUS databases were continuously reviewed and se-
lected, as well as the following databases for the annotation of results: LncRNAdb v2.0
(http://www.lncrnadb.org/), RNAdb v2.0 (http://research.imb.uq.edu.au/rnadb/), GEN-
CODE v21 (https://www.gencodegenes.org), RefSeq (https://www.ncbi.nlm.nih.gov/
refseq/), ENCODE CAGE (https://www.encodeproject.org), UCSC_knowngene
(https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=knownGene&c=chrX), FAN-
TOM5CAT (https://fantom.gsc.riken.jp/5/data/), LncBook (https://ngdc.cncb.ac.cn/
lncbook/), UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/hgGateway), MalaC-
ards (https://www.malacards.org), GeneCards (https://www.genecards.org), KEGG
(https://www.genome.jp/kegg/kegg2.html), STRING V11.5. (https://string-db.org/),
Human Genome Connectome (HGC; https://hgc.rockefeller.edu/), and AlzGene
(http://www.alzgene.org/). These websites were accessed between March and July 2023.
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https://string-db.org/
https://hgc.rockefeller.edu/
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4.6. Statistical Analysis

A descriptive analysis was made of the sociodemographic variables according to
their nature. For categorical variables such as gender, educational level, and marital
status, frequencies and proportions were calculated and compared using a χ2-based test of
independence. For continuous variables such as age at study entry, age at disease onset,
weight, height, body mass index (BMI), and MMSE and MoCA test results, measures of
central tendency and dispersion were calculated. Normality and homogeneity of variance
were tested, respectively, with the Shapiro–Wilk and Bartlett tests. Continuous variables
meeting the assumptions of normality and homogeneity of variance were compared using a
two-sample t-test for independent samples and the nonparametric Wilcoxon test otherwise.
Unless otherwise stated, all statistical analysis was performed in R version 4.3.1 [112].

4.7. ML-Based Predictive Model for AD Diagnosis Based on lnRNA Expression

A Machine Learning (ML)-based predictive model combining lncRNA expression
with demographic variables such as gender, age, and educational level was designed
and validated. For this purpose, several ML algorithms were explored, including Clas-
sification and Regression Trees (CART) [113], Random Forrest (RF) [30], Support Vector
Machines (SVMs) [112,113], and eXtreme Gradient Boosting (XGBoost) [114]. A full list of
ML algorithms is provided in Table S1 of the Supplementary Material.

ML-based predictive models were constructed and fitted using 70% of the data
(21 individuals) as the training dataset and the remaining 30% of data (9 individuals)
as the testing dataset. In all models, AD status (0: control; 1: case) was used as the de-
pendent (outcome) variable and sex, years of education, and the expression levels of the
identified lncRNAs were used as predictors. Due to the nature of the response variable, the
parameters of the ML algorithms were determined as those that maximize the accuracy
in predicting the diagnosis of AD. Subsequently, models were validated by calculating
the measure of accuracy weighted on the test data, which expresses the percentage of
individuals (case vs. control) correctly classified. Finally, the models were evaluated us-
ing ROC curve analysis and area under the ROC curve (AUC) as performance measures.
Sensitivity, specificity, precision, positive predictive value (PPV), negative predictive value
(NPV), and lift were measured in parallel. To identify the most important predictors of
disease diagnosis, the relative importance of each of the variables included in the model
was calculated as a measure reflecting the predictive power for AD diagnosis.

5. Conclusions

Alzheimer’s disease (AD) poses a significant public health challenge, being a leading
cause of disability and dependency in the elderly, with profound physical, psychological,
and economic impacts on caregivers, families, and society. Understanding the pathogenic
mechanisms of AD is crucial for improving its management. While genetic risk variants
have been a focus of many studies, there is growing recognition of the importance of
elucidating the regulatory roles of genes, particularly non-coding RNAs (ncRNAs). These
ncRNAs play key roles in modulating gene expression through intricate interactions with
DNA, mRNA, and proteins, highlighting their potential significance in the development
and progression of AD.

In this study, we examined the differential expression of long non-coding RNAs
(lncRNAs) in circulating exosomes between individuals with Alzheimer’s disease (AD)
and healthy controls. A total of 647 lncRNAs showed differential expression, with 550
being upregulated and 97 downregulated (Figure 1). These lncRNAs are implicated in
gene expression regulation at various levels and are associated with functions such as
chromatin modification, nuclear organization, and mRNA splicing, offering insights into
AD pathology. Among the identified lncRNAs, 18 were found to potentially contribute to
the AD pathogenic network (Table 5). In particular, the TMEM186 and AC109635.2 lncR-
NAs, targeting the PMM2 and SNX8, respectively, are involved in Aβ peptide proteostasis.
Additionally, PROX1-AS, targeting the PROX1 gene, is linked to neurogenesis and cell
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differentiation processes. Finally, we explored the predictive capacity of demographic
variables and expression levels of selected lncRNAs to diagnose AD in our population.
For this purpose, 14 ML algorithms were implemented and evaluated. We were able
to establish that the svmLinear2 ML algorithm was the most accurate, with an accuracy
of >98% (Figure 3). Additionally, variable importance analyses revealed that the lncR-
NAs ENST00000608936 (PROX1-AS1) and ENST00000582092 (SS18) are the most relevant.
Interestingly, using the OneR algorithm, we established that ENST00000608936 (PROX1-
AS1) and ENST00000433747 (AC073529.1) show the highest relevance for AD diagnosis
(Table 8 and Figure 6).

In the future, the differential expression of the lncRNAs identified in this study should
be validated in independent cohorts. To this end, it is important to design a case–control
study with a larger sample size than the one evaluated here and to use methods that
allow the analysis of their differential expression, such as RT-PCRq. This validation would
provide scientific support for the biological participation of these RNAs in the pathogenic
network of AD. It is also necessary to perform in vitro and/or in vivo experimental vali-
dation of the results of the in silico analysis. With a view to achieving this objective, the
regulation exerted by the lncRNAs identified on their respective associated target genes
could be tested. With the scientific support that validates these results, therapeutic strate-
gies aimed at the control of these associations could be developed for the redirection of their
molecular functions. In this context, our work contributes significantly to understanding
the molecular pathophysiology of AD, especially in this understudied population. The
predictive model developed has the potential to be a valuable tool in clinical settings,
enabling healthcare professionals to anticipate AD diagnosis. This, in turn, allows for the
provision of preventive alternatives that can delay the onset and/or progression of the
disease, thereby improving the quality of life for affected individuals and their caregivers.
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Sakaj, M.; et al. Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage.
Int. J. Mol. Sci. 2020, 21, 6859. [CrossRef] [PubMed]

18. Maurano, M.T.; Humbert, R.; Rynes, E.; Thurman, R.E.; Haugen, E.; Wang, H.; Reynolds, A.P.; Sandstrom, R.; Qu, H.; Brody,
J.; et al. Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science 2012, 337, 1190–1195.
[CrossRef] [PubMed]

19. Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al.
Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [CrossRef]

20. The ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489, 57–74.
[CrossRef]

21. Panni, S.; Lovering, R.C.; Porras, P.; Orchard, S. Non-Coding RNA Regulatory Networks. Biochim. Biophys. Acta Gene Regul. Mech.
2020, 1863, 194417. [CrossRef]

22. Fei, X.; Wang, S.; Li, J.; Zeng, Q.; Gao, Y.; Hu, Y. Bibliometric Analysis of Research on Alzheimer’s Disease and Non-Coding
RNAs: Opportunities and Challenges. Front. Aging Neurosci. 2022, 14, 194417. [CrossRef] [PubMed]

23. Long, J.; Zhang, Y.; Liu, X.; Pan, M.; Gao, Q. Exosomes in the Field of Neuroscience: A Scientometric Study and Visualization
Analysis. Front. Neurol. 2022, 13, 871491. [CrossRef] [PubMed]

https://www.who.int/news-room/fact-sheets/detail/dementia
https://doi.org/10.3390/ijms24021059
https://www.ncbi.nlm.nih.gov/pubmed/36674580
https://doi.org/10.1111/bpa.12879
https://www.ncbi.nlm.nih.gov/pubmed/32654324
https://doi.org/10.1159/000464422
https://www.ncbi.nlm.nih.gov/pubmed/28588356
https://doi.org/10.3390/biomedicines10020315
https://www.ncbi.nlm.nih.gov/pubmed/35203524
https://doi.org/10.3390/diagnostics11050887
https://www.ncbi.nlm.nih.gov/pubmed/34067584
https://doi.org/10.32481/djph.2021.09.009
https://www.ncbi.nlm.nih.gov/pubmed/34604768
https://doi.org/10.1016/j.pneurobio.2013.01.003
https://www.ncbi.nlm.nih.gov/pubmed/23578568
https://doi.org/10.3390/diagnostics11081473
https://doi.org/10.3390/s23094184
https://doi.org/10.1146/annurev-biochem-013118-111902
https://doi.org/10.1126/science.aau6977
https://www.ncbi.nlm.nih.gov/pubmed/32029601
https://doi.org/10.1038/s41582-020-0333-7
https://www.ncbi.nlm.nih.gov/pubmed/32203399
https://doi.org/10.1007/s00401-018-1868-1
https://doi.org/10.4103/1673-5374.320999
https://doi.org/10.1007/s12035-021-02547-y
https://doi.org/10.3390/ijms21186859
https://www.ncbi.nlm.nih.gov/pubmed/32962107
https://doi.org/10.1126/science.1222794
https://www.ncbi.nlm.nih.gov/pubmed/22955828
https://doi.org/10.1038/35057062
https://doi.org/10.1038/nature11247
https://doi.org/10.1016/j.bbagrm.2019.194417
https://doi.org/10.3389/fnagi.2022.1037068
https://www.ncbi.nlm.nih.gov/pubmed/36329875
https://doi.org/10.3389/fneur.2022.871491
https://www.ncbi.nlm.nih.gov/pubmed/35655617


Int. J. Mol. Sci. 2024, 25, 7641 22 of 25

24. Lan, Z.; Chen, Y.; Jin, J.; Xu, Y.; Zhu, X. Long Non-Coding RNA: Insight Into Mechanisms of Alzheimer’s Disease. Front. Mol.
Neurosci. 2021, 14, 821002. [CrossRef] [PubMed]

25. Wu, P.; Zuo, X.; Deng, H.; Liu, X.; Liu, L.; Ji, A. Roles of Long Noncoding RNAs in Brain Development, Functional Diversification
and Neurodegenerative Diseases. Brain Res. Bull. 2013, 97, 69–80. [CrossRef] [PubMed]

26. Luo, Q.; Chen, Y. Long Noncoding RNAs and Alzheimer’s Disease. Clin. Interv. Aging 2016, 11, 867–872. [CrossRef] [PubMed]
27. Zhou, S.; Yu, X.; Wang, M.; Meng, Y.; Song, D.; Yang, H.; Wang, D.; Bi, J.; Xu, S. Long Non-Coding RNAs in Pathogenesis of

Neurodegenerative Diseases. Front. Cell Dev. Biol. 2021, 9, 719247. [CrossRef] [PubMed]
28. Shobeiri, P.; Alilou, S.; Jaberinezhad, M.; Zare, F.; Karimi, N.; Maleki, S.; Teixeira, A.L.; Perry, G.; Rezaei, N. Circulating Long

Non-Coding RNAs as Novel Diagnostic Biomarkers for Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis.
PLoS ONE 2023, 18, e0281784. [CrossRef] [PubMed]

29. Fukunaga, T.; Hamada, M. RIblast: An Ultrafast RNA-RNA Interaction Prediction System Based on a Seed-and-Extension
Approach. Bioinformatics 2017, 33, 2666–2674. [CrossRef] [PubMed]

30. Holte, R.C. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Mach. Learn. 1993, 11, 63–90.
[CrossRef]

31. World Health Organization. Global Status Report on the Public Health Response to Dementia; World Health Organization: Geneva,
Switzerland, 2021; ISBN 978-92-4-003325-2.

32. Kurkinen, M.; Fułek, M.; Fułek, K.; Beszłej, J.A.; Kurpas, D.; Leszek, J. The Amyloid Cascade Hypothesis in Alzheimer’s Disease:
Should We Change Our Thinking? Biomolecules 2023, 13, 453. [CrossRef]

33. Rezazadeh, M.; Hosseinzadeh, H.; Moradi, M.; Salek Esfahani, B.; Talebian, S.; Parvin, S.; Gharesouran, J. Genetic Discoveries and
Advances in Late-onset Alzheimer’s Disease. J. Cell. Physiol. 2019, 234, 16873–16884. [CrossRef] [PubMed]

34. Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered MicroRNA Profiles in Cerebrospinal Fluid Exosome in Parkinson Disease and
Alzheimer Disease. Oncotarget 2015, 6, 37043–37053. [CrossRef] [PubMed]

35. Chen, C.; Sang, Y. Phosphomannomutase 2 Hyperinsulinemia: Recent Advances of Genetic Pathogenesis, Diagnosis, and
Management. Front. Endocrinol. 2022, 13, 1102307. [CrossRef] [PubMed]

36. Edlund, C.; Söderberg, M.; Kristensson, K.; Dallner, G. Ubiquinone, Dolichol, and Cholesterol Metabolism in Aging and
Alzheimer’s Disease. Biochem. Cell Biol. 1992, 70, 422–428. [CrossRef] [PubMed]

37. Ji, B.-S.; Cen, J.; Liu, L.; He, L. In Vitro and In Vivo Study of Dolichyl Phosphate on the Efflux Activity of P-Glycoprotein at the
Blood-Brain Barrier. Int. J. Dev. Neurosci. 2013, 31, 828–835. [CrossRef] [PubMed]

38. Dyve, A.B.; Bergan, J.; Utskarpen, A.; Sandvig, K. Sorting Nexin 8 Regulates Endosome-to-Golgi Transport. Biochem. Biophys. Res.
Commun. 2009, 390, 109–114. [CrossRef] [PubMed]

39. Xie, Y.; Niu, M.; Ji, C.; Huang, T.Y.; Zhang, C.; Tian, Y.; Shi, Z.; Wang, C.; Zhao, Y.; Luo, H.; et al. SNX8 Enhances Non-
Amyloidogenic APP Trafficking and Attenuates Aβ Accumulation and Memory Deficits in an AD Mouse. Front. Cell. Neurosci.
2019, 13, 410. [CrossRef]

40. Huang, W.-C.; Yen, F.-C.; Shie, F.-S.; Pan, C.-M.; Shiao, Y.-J.; Yang, C.-N.; Huang, F.-L.; Sung, Y.-J.; Tsay, H.-J. TGF-Beta1 Blockade
of Microglial Chemotaxis toward Abeta Aggregates Involves SMAD Signaling and down-Regulation of CCL5. J. Neuroinflamm.
2010, 7, 28. [CrossRef] [PubMed]

41. Lee, M.J.; Wang, C.; Carroll, M.J.; Brubaker, D.K.; Hyman, B.T.; Lauffenburger, D.A. Computational Interspecies Translation
Between Alzheimer’s Disease Mouse Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM
Receptor Agonist Signatures, Distinct from Influences of Aging. Front. Neurosci. 2021, 15, 727784. [CrossRef]

42. Braun, H.; Staal, J. Stabilization of the TAK1 Adaptor Proteins TAB2 and TAB3 Is Critical for Optimal NF-KB Activation. FEBS J.
2020, 287, 3161–3164. [CrossRef]

43. Rostagno, A.A. Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 24, 107. [CrossRef] [PubMed]
44. Xia, P.; Chen, J.; Liu, Y.; Cui, X.; Wang, C.; Zong, S.; Wang, L.; Lu, Z. MicroRNA-22-3p Ameliorates Alzheimer’s Disease by

Targeting SOX9 through the NF-KB Signaling Pathway in the Hippocampus. J. Neuroinflamm. 2022, 19, 180. [CrossRef] [PubMed]
45. Yan, H.; Zhu, X.; Xie, J.; Zhao, Y.; Liu, X. β-Amyloid Increases Neurocan Expression through Regulating Sox9 in Astrocytes:

A Potential Relationship between Sox9 and Chondroitin Sulfate Proteoglycans in Alzheimer’s Disease. Brain Res. 2016, 1646,
377–383. [CrossRef] [PubMed]

46. Regen, F.; Hellmann-Regen, J.; Costantini, E.; Reale, M. Neuroinflammation and Alzheimer’s Disease: Implications for Microglial
Activation. Curr. Alzheimer Res. 2017, 14, 1140–1148. [CrossRef] [PubMed]

47. Larson, C.; Oronsky, B.; Carter, C.A.; Oronsky, A.; Knox, S.J.; Sher, D.; Reid, T.R. TGF-Beta: A Master Immune Regulator. Expert.
Opin. Ther. Targets 2020, 24, 427–438. [CrossRef] [PubMed]

48. Herrera-Rivero, M.; Santarelli, F.; Brosseron, F.; Kummer, M.P.; Heneka, M.T. Dysregulation of TLR5 and TAM Ligands in the
Alzheimer’s Brain as Contributors to Disease Progression. Mol. Neurobiol. 2019, 56, 6539–6550. [CrossRef] [PubMed]

49. Goudarzi, S.; Gilchrist, S.E.; Hafizi, S. Gas6 Induces Myelination through Anti-Inflammatory IL-10 and TGF-β Upregulation in
White Matter and Glia. Cells 2020, 9, 1779. [CrossRef] [PubMed]

50. Mulero, M.C.; Huxford, T.; Ghosh, G. NF-KB, IκB, and IKK: Integral Components of Immune System Signaling; Springer: Singapore,
2019; pp. 207–226.

51. Lin, J.-Z.; Duan, M.-R.; Lin, N.; Zhao, W.-J. The Emerging Role of the Chondroitin Sulfate Proteoglycan Family in Neurodegenera-
tive Diseases. Rev. Neurosci. 2021, 32, 737–750. [CrossRef] [PubMed]

https://doi.org/10.3389/fnmol.2021.821002
https://www.ncbi.nlm.nih.gov/pubmed/35095418
https://doi.org/10.1016/j.brainresbull.2013.06.001
https://www.ncbi.nlm.nih.gov/pubmed/23756188
https://doi.org/10.2147/CIA.S107037
https://www.ncbi.nlm.nih.gov/pubmed/27418812
https://doi.org/10.3389/fcell.2021.719247
https://www.ncbi.nlm.nih.gov/pubmed/34527672
https://doi.org/10.1371/journal.pone.0281784
https://www.ncbi.nlm.nih.gov/pubmed/36947499
https://doi.org/10.1093/bioinformatics/btx287
https://www.ncbi.nlm.nih.gov/pubmed/28459942
https://doi.org/10.1023/A:1022631118932
https://doi.org/10.3390/biom13030453
https://doi.org/10.1002/jcp.28372
https://www.ncbi.nlm.nih.gov/pubmed/30790294
https://doi.org/10.18632/oncotarget.6158
https://www.ncbi.nlm.nih.gov/pubmed/26497684
https://doi.org/10.3389/fendo.2022.1102307
https://www.ncbi.nlm.nih.gov/pubmed/36726472
https://doi.org/10.1139/o92-065
https://www.ncbi.nlm.nih.gov/pubmed/1449707
https://doi.org/10.1016/j.ijdevneu.2013.10.005
https://www.ncbi.nlm.nih.gov/pubmed/24161469
https://doi.org/10.1016/j.bbrc.2009.09.076
https://www.ncbi.nlm.nih.gov/pubmed/19782049
https://doi.org/10.3389/fncel.2019.00410
https://doi.org/10.1186/1742-2094-7-28
https://www.ncbi.nlm.nih.gov/pubmed/20429874
https://doi.org/10.3389/fnins.2021.727784
https://doi.org/10.1111/febs.15210
https://doi.org/10.3390/ijms24010107
https://www.ncbi.nlm.nih.gov/pubmed/36613544
https://doi.org/10.1186/s12974-022-02548-1
https://www.ncbi.nlm.nih.gov/pubmed/35821145
https://doi.org/10.1016/j.brainres.2016.06.010
https://www.ncbi.nlm.nih.gov/pubmed/27317830
https://doi.org/10.2174/1567205014666170203141717
https://www.ncbi.nlm.nih.gov/pubmed/28164764
https://doi.org/10.1080/14728222.2020.1744568
https://www.ncbi.nlm.nih.gov/pubmed/32228232
https://doi.org/10.1007/s12035-019-1540-3
https://www.ncbi.nlm.nih.gov/pubmed/30852796
https://doi.org/10.3390/cells9081779
https://www.ncbi.nlm.nih.gov/pubmed/32722558
https://doi.org/10.1515/revneuro-2020-0146
https://www.ncbi.nlm.nih.gov/pubmed/33655733


Int. J. Mol. Sci. 2024, 25, 7641 23 of 25

52. He, Y.; Zhang, H.; Yung, A.; Villeda, S.A.; Jaeger, P.A.; Olayiwola, O.; Fainberg, N.; Wyss-Coray, T. ALK5-Dependent TGF-β
Signaling Is a Major Determinant of Late-Stage Adult Neurogenesis. Nat. Neurosci. 2014, 17, 943–952. [CrossRef] [PubMed]

53. Gradari, S.; Herrera, A.; Tezanos, P.; Fontán-Lozano, Á.; Pons, S.; Trejo, J.L. The Role of Smad2 in Adult Neuroplasticity as Seen
through Hippocampal-Dependent Spatial Learning/Memory and Neurogenesis. J. Neurosci. 2021, 41, 6836–6849. [CrossRef]

54. Zhou, S.; Li, Y.; Zhang, Z.; Yuan, Y. An Insight into the TAM System in Alzheimer’s Disease. Int. Immunopharmacol. 2023, 116,
109791. [CrossRef] [PubMed]

55. Ji, R.; Meng, L.; Jiang, X.; Cvm, N.K.; Ding, J.; Li, Q.; Lu, Q. TAM Receptors Support Neural Stem Cell Survival, Proliferation and
Neuronal Differentiation. PLoS ONE 2014, 9, e115140. [CrossRef] [PubMed]

56. Karalay, O.; Doberauer, K.; Vadodaria, K.C.; Knobloch, M.; Berti, L.; Miquelajauregui, A.; Schwark, M.; Jagasia, R.; Taketo,
M.M.; Tarabykin, V.; et al. Prospero-Related Homeobox 1 Gene (Prox1) Is Regulated by Canonical Wnt Signaling and Has a
Stage-Specific Role in Adult Hippocampal Neurogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 5807–5812. [CrossRef]

57. Lee, Y.; Kim, D.; Ryu, J.R.; Zhang, Y.; Kim, S.; Kim, Y.; Lee, B.; Sun, W.; Han, K. Phosphorylation of CYFIP2, a Component of the
WAVE-Regulatory Complex, Regulates Dendritic Spine Density and Neurite Outgrowth in Cultured Hippocampal Neurons
Potentially by Affecting the Complex Assembly. Neuroreport 2017, 28, 749–754. [CrossRef]

58. Repetto, D.; Camera, P.; Melani, R.; Morello, N.; Russo, I.; Calcagno, E.; Tomasoni, R.; Bianchi, F.; Berto, G.; Giustetto, M.;
et al. P140Cap Regulates Memory and Synaptic Plasticity through Src-Mediated and Citron-N-Mediated Actin Reorganization.
J. Neurosci. 2014, 34, 1542–1553. [CrossRef]

59. Russo, I.; Gavello, D.; Menna, E.; Vandael, D.; Veglia, C.; Morello, N.; Corradini, I.; Focchi, E.; Alfieri, A.; Angelini, C.; et al.
P140Cap Regulates GABAergic Synaptogenesis and Development of Hippocampal Inhibitory Circuits. Cereb. Cortex 2019, 29,
91–105. [CrossRef] [PubMed]

60. Sharma, V.K.; Singh, T.G.; Singh, S.; Garg, N.; Dhiman, S. Apoptotic Pathways and Alzheimer’s Disease: Probing Therapeutic
Potential. Neurochem. Res. 2021, 46, 3103–3122. [CrossRef] [PubMed]

61. Singh, S.; Singh, T.G. Role of Nuclear Factor Kappa B (NF-KB) Signaling in Neurodegenerative Diseases: An Mechanistic
Approach. Curr. Neuropharmacol. 2020, 18, 918–935. [CrossRef]

62. Lee, C.-H.; Chun, T. Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function.
Mol. Cells 2019, 42, 1–7. [CrossRef]

63. Maity, S.; Farrell, K.; Navabpour, S.; Narayanan, S.N.; Jarome, T.J. Epigenetic Mechanisms in Memory and Cognitive Decline
Associated with Aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 12280. [CrossRef]

64. Gupta, R.; Ambasta, R.K.; Kumar, P. Histone Deacetylase in Neuropathology. Adv. Clin. Chem. 2021, 104, 151–231. [CrossRef]
[PubMed]

65. Sepehry, A.A.; Lee, P.E.; Hsiung, G.-Y.R.; Beattie, B.L.; Feldman, H.H.; Jacova, C. The 2002 NIMH Provisional Diagnostic Criteria
for Depression of Alzheimer’s Disease (PDC-DAD): Gauging Their Validity over a Decade Later. J Alzheimer’s Dis 2017, 58,
449–462. [CrossRef] [PubMed]

66. Ma, R.; Kutchy, N.A.; Chen, L.; Meigs, D.D.; Hu, G. Primary Cilia and Ciliary Signaling Pathways in Aging and Age-Related
Brain Disorders. Neurobiol. Dis. 2022, 163, 105607. [CrossRef] [PubMed]

67. Dando, S.J.; Mackay-Sim, A.; Norton, R.; Currie, B.J.; St John, J.A.; Ekberg, J.A.K.; Batzloff, M.; Ulett, G.C.; Beacham, I.R. Pathogens
Penetrating the Central Nervous System: Infection Pathways and the Cellular and Molecular Mechanisms of Invasion. Clin.
Microbiol. Rev. 2014, 27, 691–726. [CrossRef]

68. Bombardi, C.; Di Giovanni, G. Functional Anatomy of 5-HT2A Receptors in the Amygdala and Hippocampal Complex: Relevance
to Memory Functions. Exp. Brain Res. 2013, 230, 427–439. [CrossRef]

69. Bombardi, C.; Grandis, A.; Pivac, N.; Sagud, M.; Lucas, G.; Chagraoui, A.; Lemaire-Mayo, V.; De Deurwaerdère, P.; Di Giovanni,
G. Serotonin Modulation of Hippocampal Functions: From Anatomy to Neurotherapeutics. Prog. Brain Res. 2021, 261, 83–158.
[CrossRef]

70. Gupta, M.; Neavin, D.; Liu, D.; Biernacka, J.; Hall-Flavin, D.; Bobo, W.V.; Frye, M.A.; Skime, M.; Jenkins, G.D.; Batzler, A.; et al.
TSPAN5, ERICH3 and Selective Serotonin Reuptake Inhibitors in Major Depressive Disorder: Pharmacometabolomics-Informed
Pharmacogenomics. Mol. Psychiatry 2016, 21, 1717–1725. [CrossRef]

71. Khanna, H. Photoreceptor Sensory Cilium: Traversing the Ciliary Gate. Cells 2015, 4, 674–686. [CrossRef]
72. Pistollato, F.; Sumalla Cano, S.; Elio, I.; Masias Vergara, M.; Giampieri, F.; Battino, M. Role of Gut Microbiota and Nutrients in

Amyloid Formation and Pathogenesis of Alzheimer Disease. Nutr. Rev. 2016, 74, 624–634. [CrossRef]
73. Generoso, J.S.; Giridharan, V.V.; Lee, J.; Macedo, D.; Barichello, T. The Role of the Microbiota-Gut-Brain Axis in Neuropsychiatric

Disorders. Braz. J. Psychiatry 2021, 43, 293–305. [CrossRef]
74. Zeng, H.-M.; Han, H.-B.; Zhang, Q.-F.; Bai, H. Application of Modern Neuroimaging Technology in the Diagnosis and Study of

Alzheimer’s Disease. Neural Regen. Res. 2021, 16, 73. [CrossRef] [PubMed]
75. d’Abramo, C.; D’Adamio, L.; Giliberto, L. Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease:

Sensitivity, Specificity and Potential for Clinical Use. J. Pers. Med. 2020, 10, 116. [CrossRef] [PubMed]
76. Atri, A. The Alzheimer’s Disease Clinical Spectrum. Med. Clin. N. Am. 2019, 103, 263–293. [CrossRef] [PubMed]
77. Davda, N.; Corkill, R. Biomarkers in the Diagnosis and Prognosis of Alzheimer’s Disease. J. Neurol. 2020, 267, 2475–2477.

[CrossRef] [PubMed]

https://doi.org/10.1038/nn.3732
https://www.ncbi.nlm.nih.gov/pubmed/24859199
https://doi.org/10.1523/JNEUROSCI.2619-20.2021
https://doi.org/10.1016/j.intimp.2023.109791
https://www.ncbi.nlm.nih.gov/pubmed/36738678
https://doi.org/10.1371/journal.pone.0115140
https://www.ncbi.nlm.nih.gov/pubmed/25514676
https://doi.org/10.1073/pnas.1013456108
https://doi.org/10.1097/WNR.0000000000000838
https://doi.org/10.1523/JNEUROSCI.2341-13.2014
https://doi.org/10.1093/cercor/bhx306
https://www.ncbi.nlm.nih.gov/pubmed/29161354
https://doi.org/10.1007/s11064-021-03418-7
https://www.ncbi.nlm.nih.gov/pubmed/34386919
https://doi.org/10.2174/1570159X18666200207120949
https://doi.org/10.14348/molcells.2018.0419
https://doi.org/10.3390/ijms222212280
https://doi.org/10.1016/bs.acc.2020.09.004
https://www.ncbi.nlm.nih.gov/pubmed/34462055
https://doi.org/10.3233/JAD-161061
https://www.ncbi.nlm.nih.gov/pubmed/28453472
https://doi.org/10.1016/j.nbd.2021.105607
https://www.ncbi.nlm.nih.gov/pubmed/34979259
https://doi.org/10.1128/CMR.00118-13
https://doi.org/10.1007/s00221-013-3512-6
https://doi.org/10.1016/bs.pbr.2021.01.031
https://doi.org/10.1038/mp.2016.6
https://doi.org/10.3390/cells4040674
https://doi.org/10.1093/nutrit/nuw023
https://doi.org/10.1590/1516-4446-2020-0987
https://doi.org/10.4103/1673-5374.286957
https://www.ncbi.nlm.nih.gov/pubmed/32788450
https://doi.org/10.3390/jpm10030116
https://www.ncbi.nlm.nih.gov/pubmed/32911755
https://doi.org/10.1016/j.mcna.2018.10.009
https://www.ncbi.nlm.nih.gov/pubmed/30704681
https://doi.org/10.1007/s00415-020-10037-9
https://www.ncbi.nlm.nih.gov/pubmed/32638106


Int. J. Mol. Sci. 2024, 25, 7641 24 of 25

78. Bălas, a, A.F.; Chircov, C.; Grumezescu, A.M. Body Fluid Biomarkers for Alzheimer’s Disease—An Up-to-Date Overview.
Biomedicines 2020, 8, 421. [CrossRef] [PubMed]

79. Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for Alzheimer’s Disease Early Diagnosis. J. Pers. Med. 2020, 10, 114.
[CrossRef]

80. Dhall, D.; Kaur, R.; Juneja, M. Machine Learning: A Review of the Algorithms and Its Applications. In Proceedings of the ICRIC
2019; Lecture Notes in Electrical Engineering. Springer: Cham, Switzerland, 2020; Volume 597, pp. 47–63. [CrossRef]

81. Jo, T.; Nho, K.; Saykin, A.J. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using
Neuroimaging Data. Front. Aging Neurosci. 2019, 11, 220. [CrossRef] [PubMed]

82. Rhodius-Meester, H.F.M.; Liedes, H.; Koikkalainen, J.; Wolfsgruber, S.; Coll-Padros, N.; Kornhuber, J.; Peters, O.; Jessen, F.;
Kleineidam, L.; Molinuevo, J.L.; et al. Computer-assisted Prediction of Clinical Progression in the Earliest Stages of AD. Alzheimer’s
Dement. Diagn. Assess. Dis. Monit. 2018, 10, 726–736. [CrossRef]

83. Licher, S.; Leening, M.J.G.; Yilmaz, P.; Wolters, F.J.; Heeringa, J.; Bindels, P.J.E.; Vernooij, M.W.; Stephan, B.C.M.; Steyerberg, E.W.;
Ikram, M.K.; et al. Development and Validation of a Dementia Risk Prediction Model in the General Population: An Analysis of
Three Longitudinal Studies. Am. J. Psychiatry 2019, 176, 543–551. [CrossRef]

84. Sharma, A.; Dey, P. A Machine Learning Approach to Unmask Novel Gene Signatures and Prediction of Alzheimer’s Disease
within Different Brain Regions. Genomics 2021, 113, 1778–1789. [CrossRef]

85. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder Fifth Edition Text Revision DSM-5-T; American
Psychiatric Association: Washington, DC, USA, 2022. [CrossRef]

86. Folstein, M.F.; Robins, L.N.; Helzer, J.E. The Mini-Mental State Examination. Arch. Gen. Psychiatry 1983, 40, 812. [CrossRef]
[PubMed]

87. Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The
Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53,
695–699. [CrossRef] [PubMed]

88. Allegri, R.F.; Mangone, C.A.; Villavicencio, A.F.; Rymberg, S.; Taragano, F.E.; Baumann, D. Spanish Boston Naming Test Norms.
Clin. Neuropsychol. 1997, 11, 416–420. [CrossRef]

89. Fernández, A.L.; Fulbright, R.L. Construct and Concurrent Validity of the Spanish Adaptation of the Boston Naming Test. Appl.
Neuropsychol. Adult 2015, 22, 355–362. [CrossRef] [PubMed]

90. Osterrieth, P.A. Test of Copying a Complex Figure; Contribution to the Study of Perception and Memory. Arch. Psychol. 1944, 30.
91. Bean, J. Rey Auditory Verbal Learning Test, Rey AVLT. In Encyclopedia of Clinical Neuropsychology; Springer International Publishing:

Cham, Switzerland, 2011; pp. 2174–2175. [CrossRef]
92. Reitan, R.M. The Relation of the Trail Making Test to Organic Brain Damage. J. Consult. Psychol. 1955, 19, 393–394. [CrossRef]

[PubMed]
93. Reitan, R.M. The Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Skills 1958, 8, 271–276.

[CrossRef]
94. Smith, A. Symbol Digit Modalities Test (SDMT) Manual (Revised); Western Psychological Services: Los Angeles, CA, USA, 1982.
95. Golden, C.J.; Freshwater, S. A Manual for the Adult Stroop Color and Word Test; Stoelting: Chicago, IL, USA, 2002; pp. 1–11.
96. De Renzi, E.; Vignolo, L.A. The Token Test: A Sensitive Test to Detect Receptive Disturbances in Aphasics. Brain 1962, 85, 665–678.

[CrossRef]
97. Benton, A.L.; Varney, N.R.; Hamsher, K. Des Visuospatial Judgment: A Clinical Test. Arch. Neurol. 1978, 35, 364–367. [CrossRef]
98. Aprahamian, I.; Martinelli, J.E.; Neri, A.L.; Yassuda, M.S. The Clock Drawing Test A Review of Its Accuracy in Screening for

Dementia. Dement. Neuropsychol. 2009, 3, 74–81. [CrossRef]
99. Grant, D.A.; Berg, E. A Behavioral Analysis of Degree of Reinforcement and Ease of Shifting to New Responses in a Weigl-Type

Card-Sorting Problem. J. Exp. Psychol. 1948, 38, 404–411. [CrossRef] [PubMed]
100. Brink, T.L.; Yesavage, J.A.; Lum, O.; Heersema, P.H.; Adey, M.; Rose, T.L. Screening Tests for Geriatric Depression. Clin. Gerontol.

1982, 1, 37–43. [CrossRef]
101. Reisberg, B.; Ferris, S.H.; De Leon, M.J.; Crook, T. The Global Deterioration Scale for Assessment of Primary Degenerative

Dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [CrossRef] [PubMed]
102. Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [PubMed]
103. Cummings, J. The Neuropsychiatric Inventory: Development and Applications. J. Geriatr. Psychiatry Neurol. 2020, 33, 73–84.

[CrossRef]
104. Naj, A.C.; Jun, G.; Reitz, C.; Kunkle, B.W.; Perry, W.; Park, Y.S.; Beecham, G.W.; Rajbhandary, R.A.; Hamilton-Nelson, K.L.; Wang,

L.-S.; et al. Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurol. 2014, 71, 1394.
[CrossRef]

105. Saad, M.; Brkanac, Z.; Wijsman, E.M. Family-based Genome Scan for Age at Onset of Late-onset Alzheimer’s Disease in Whole
Exome Sequencing Data. Genes Brain Behav. 2015, 14, 607–617. [CrossRef]

106. Aguirre-Acevedo, D.C.; Jaimes-Barragán, F.; Henao, E.; Tirado, V.; Muñoz, C.; Reiman, E.M.; Tariot, P.N.; Langbaum, J.B.; Lopera,
F. Diagnostic Accuracy of CERAD Total Score in a Colombian Cohort with Mild Cognitive Impairment and Alzheimer’s Disease
Affected by E280A Mutation on Presenilin-1 Gene. Int. Psychogeriatr. 2016, 28, 503–510. [CrossRef]

https://doi.org/10.3390/biomedicines8100421
https://www.ncbi.nlm.nih.gov/pubmed/33076333
https://doi.org/10.3390/jpm10030114
https://doi.org/10.1007/978-3-030-29407-6_5
https://doi.org/10.3389/fnagi.2019.00220
https://www.ncbi.nlm.nih.gov/pubmed/31481890
https://doi.org/10.1016/j.dadm.2018.09.001
https://doi.org/10.1176/appi.ajp.2018.18050566
https://doi.org/10.1016/j.ygeno.2021.04.028
https://doi.org/10.1176/appi.books.9780890425787
https://doi.org/10.1001/archpsyc.1983.01790060110016
https://www.ncbi.nlm.nih.gov/pubmed/6860082
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://www.ncbi.nlm.nih.gov/pubmed/15817019
https://doi.org/10.1080/13854049708400471
https://doi.org/10.1080/23279095.2014.939178
https://www.ncbi.nlm.nih.gov/pubmed/25668293
https://doi.org/10.1007/978-0-387-79948-3_1153
https://doi.org/10.1037/h0044509
https://www.ncbi.nlm.nih.gov/pubmed/13263471
https://doi.org/10.2466/pms.1958.8.3.271
https://doi.org/10.1093/brain/85.4.665
https://doi.org/10.1001/archneur.1978.00500300038006
https://doi.org/10.1590/S1980-57642009DN30200002
https://doi.org/10.1037/h0059831
https://www.ncbi.nlm.nih.gov/pubmed/18874598
https://doi.org/10.1300/J018v01n01_06
https://doi.org/10.1176/ajp.139.9.1136
https://www.ncbi.nlm.nih.gov/pubmed/7114305
https://www.ncbi.nlm.nih.gov/pubmed/14258950
https://doi.org/10.1177/0891988719882102
https://doi.org/10.1001/jamaneurol.2014.1491
https://doi.org/10.1111/gbb.12250
https://doi.org/10.1017/S1041610215001660


Int. J. Mol. Sci. 2024, 25, 7641 25 of 25

107. Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A Comparison of Normalization Methods for High Density Oligonucleotide
Array Data Based on Variance and Bias. Bioinformatics 2003, 19, 185–193. [CrossRef]

108. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. Ser. B 1995, 57, 289–300. [CrossRef]

109. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2021.

110. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Taylor & Francis: Abingdon, UK, 1984;
ISBN 9780412048418.

111. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
112. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
113. Amaya-Tejera, N.; Gamarra, M.; Vélez, J.I.; Zurek, E. A Distance-Based Kernel for Classification via Support Vector Machines.

Front. Artif. Intell. 2024, 7, 1287875. [CrossRef] [PubMed]
114. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. Paper presented at the 22nd SIGKDD Conference on Knowledge

Discovery and Data Mining. arXiv 2016, arXiv:1603.02754.
115. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Li, Y. xgboost: Extreme Gradient Boosting. R package version

1.0.0.2. 2020. Available online: https://CRAN.R-project.org/package=xgboost (accessed on 24 February 2024).
116. Kunh, M. Caret: Classification and Regression Training. (Version R Package Version 6.0-86). 2020. Available online:

https://CRAN.R-project.org/package=caret (accessed on 24 February 2024).
117. Salazar, D.A.; Vélez, J.I.; Salazar, J.C. Comparison between SVM and Logistic Regression: Which one is Better to Discriminate?

Rev. Colomb. Estadística 2012, 35, 223–237.
118. Satterfield, J.H.; Cantwell, D.P.; Satterfield, B.T. Pathophysiology of the hyperactive child syndrome. Arch. Gen. Psychiatry 1974,

31, 839–844. Available online: https://www.ncbi.nlm.nih.gov/pubmed/4441251 (accessed on 24 February 2024). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.3389/frai.2024.1287875
https://www.ncbi.nlm.nih.gov/pubmed/38469159
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=caret
https://www.ncbi.nlm.nih.gov/pubmed/4441251
https://doi.org/10.1001/archpsyc.1974.01760180079010

	Introduction 
	Results 
	Subjects 
	Differentially Expressed lncRNAs 
	Protein–Protein Interactions (PPIs) between lncRNA-Associated Genes 
	Biological Relatedness between lncRNA-Associated Genes and AD-Associated Genes 
	ML-Based Diagnostic Assessment 

	Discussion 
	Materials and Methods 
	Subjects 
	Neuropsychological Assessment 
	RNA Isolation 
	Exosomal RNA Extraction 
	lncRNA Microarray Study 
	Quality Control 
	Complementary RNA Synthesis and Tagging 
	Hybridization and Microarray Scanning 
	lncRNA Microarray and Data Normalization 
	Identification of Differentially Expressed lncRNAs 
	lncRNA Annotation 

	Statistical Analysis 
	ML-Based Predictive Model for AD Diagnosis Based on lnRNA Expression 

	Conclusions 
	References

