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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive
cognitive decline and memory loss. While the precise causes of AD remain unclear, emerging
evidence suggests that messenger RNA (mRNA) dysregulation contributes to AD pathology and
risk. This study examined exosomal mRNA expression profiles of 15 individuals diagnosed with
AD and 15 healthy controls from Barranquilla, Colombia. Utilizing advanced bioinformatics and
machine learning (ML) techniques, we identified differentially expressed mRNAs and assessed
their predictive power for AD diagnosis and AD age of onset (ADAOO). Our results showed
that ENST00000331581 (CADM1) and ENST00000382258 (TNFRSF19) were significantly upregu-
lated in AD patients. Key predictors for AD diagnosis included ENST00000311550 (GABRB3),
ENST00000278765 (GGTLC1), ENST00000331581 (CADM1), ENST00000372572 (FOXJ3), and
ENST00000636358 (ACY1), achieving > 90% accuracy in both training and testing datasets. For
ADAOO, ENST00000340552 (LIMK2) expression correlated with a delay of ~12.6 years, while
ENST00000304677 (RNASE6), ENST00000640218 (HNRNPU), ENST00000602017 (PPP5D1),
ENST00000224950 (STN1), and ENST00000322088 (PPP2R1A) emerged as the most important predic-
tors. ENST00000304677 (RNASE6) and ENST00000602017 (PPP5D1) showed promising predictive
accuracy in unseen data. These findings suggest that mRNA expression profiles may serve as effective
biomarkers for AD diagnosis and ADAOO, providing a cost-efficient and minimally invasive tool for
early detection and monitoring. Further research is needed to validate these results in larger, diverse
cohorts and explore the biological roles of the identified mRNAs in AD pathogenesis.

Keywords: Alzheimer’s disease; exosomes; mRNA; machine learning; personalized medicine

1. Introduction

Alzheimer’s disease (AD), the most common form of dementia [1], originates from
a combination of genetic, environmental, and lifestyle factors that contribute to the ac-
cumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau tangles in the
brain [2–5]. Although aging is the primary risk factor of late-onset AD (>65 y/o) [3], alleles
harbored in major and minor effect genes play a significant role in shaping the architecture
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of AD etiology [5,6]. Currently, AD diagnosis involves a combination of cognitive assess-
ments, brain imaging, and biomarker analysis. However, early detection of AD remains
elusive due to the subtle nature of early symptoms [5,7–14].

Messenger RNA (mRNA) transcripts are single-stranded RNA molecules that serve
as intermediates between the genetic information encoded in DNA and the synthesis of
proteins via translation. Analysis of brain mRNA expression has allowed researchers to
identify differences between individuals with AD and healthy controls, as well as genes
actively involved in AD development and progression [15,16]. This provides valuable
insights into the molecular pathways and cellular processes that are dysregulated in the
disease [15,17].

One significant breakthrough in AD detection has been the identification of the SRSF1
and PTBP1 proteins in regulating AD-related genes [18]. These proteins act as splicing
factors, influencing the production of specific isoforms of the CD33 gene, which is asso-
ciated with AD. Other studies linked mRNA expression for specific genes, such as the
acetylcholinesterase (ACHE) gene, proposed as a potential biomarker for diagnosing AD
and related conditions [19]. This association is crucial as it links mRNA expression to
oxidative stress, a key contributor to the progression of AD.

Additionally, cellular hypoxia can influence AD development by altering pre-mRNA
splicing, particularly of the Tau gene, suggesting that environmental influences can signifi-
cantly impact AD progression through changes in mRNA processing [20]. Furthermore,
crucial microRNA-mRNA pairs, such as miR-26a-5p/PTGS2, have been identified as
essential regulators in AD, highlighting the importance of regulatory networks and post-
transcriptional regulation in AD development [21,22]. Recently, the microRNA 221, which
is a cerebrospinal fluid microRNA, has emerged as a promising candidate for the early
detection of AD [6,23,24], suggesting that the study of mRNA has the potential to advance
the development of new diagnostic tools and therapeutic strategies for AD [25,26].

Since 2020, a collaborative effort has been underway to elucidate the genetic land-
scape of AD susceptibility and AD age of onset (ADAOO) in Barranquilla, Colombia.
This involves a comprehensive clinical, cognitive, neuropsychological, and genetic assess-
ment of individuals with AD (cases) and healthy unrelated controls. In this report, we
present the results and analysis of microarrays quantifying the expression of 16,580 mRNAs
using advanced bioinformatics, data analytics, and ML techniques to identify exosomal
mRNA signatures that could improve disease diagnosis, prediction, and treatment. We hy-
pothesize that (1) mRNAs could be promising, non-invasive, and reliable novel diagnostic
markers for AD in this population, and (2) these mRNA signatures could potentially allow
early diagnosis, risk prediction, and the development of targeted interventions for this
devastating neurodegenerative disease. We identify differentially expressed mRNAs that
could serve as potential biomarkers for AD diagnosis and ADAOO. Our results suggest
that integrating mRNAs with ML tools could improve early detection and monitoring. Ad-
ditionally, we provide insights into the role of mRNAs within the CADM1 and TNFRSF19
genes in AD pathology. While our findings are promising, further validation in larger
cohorts is essential to confirm the reliability of these biomarkers and explore their roles in
disease mechanisms.

2. Results
2.1. Subjects

We collected data from 30 individuals through clinical evaluations, family histories,
comprehensive neurological and neuropsychological clinical examinations, and structured
interviews. Demographic data are summarized in Table 1. The Universidad del Norte
Ethics Committee approved this study (Project Approval Act #188 of 23 May 2019).
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Table 1. Clinical and sociodemographic characterization of the study population.

Variable All
(n = 30)

Cases
(n = 15)

Controls
(n = 15) p

Mean (SD)
Age (years) 79.8 (8.7) 77.5 (8.5) 82.1 (8.6) 0.261
Age of onset

(years) 72.1 (7.2) 72.1 (7.2) - -

MMSE 19.6 (9.6) 13.9 (9.5) 25.2 (5.6) 0.001
MoCA 15.3 (11.2) 5.5 (5.3) 25.9 (3) <0.001

Frequency (%)
Sex 1

Female 22 (73.3%) 11 (73.3%) 11 (73.3%)
Male 8 (26.7%) 4 (26.7%) 4 (26.7%)

MMSE: Mini-Mental State Examination; MoCA: Montreal Cognitive Assessment; SD: standard deviation;
p: p-value.

2.2. mRNA Signatures Contributing to AD Susceptibility via Logistic Regression

The expression of 16,580 mRNAs was quantified in all participants, identifying
385 significantly associated with AD at a 5% nominal level. Of these, 82 mRNAs had
a protective effect against AD, while 303 mRNAs were associated with an increased risk of
an AD diagnosis (Figure 1a). However, none of these mRNAs were statistically significant
after FDR correction.
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Figure 1. Volcano plots for mRNAs (a) conferring AD susceptibility, (b) differentially expressed
mRNAs between the comparison groups, and (c) associated with ADAOO. Red lines show statistically
significant mRNAs at 5%.

Table 2 shows the top 10 mRNAs conferring susceptibility to AD in our sample, which
are in the KRTAP5-6, TPCN2, GALM, KCNK6, CXCR5, ZNF626, STON1, C3orf22, AKNA, and
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SMIM5 genes. Figure 2a shows the p-value distribution across chromosomes. Note that mR-
NAs most significantly associated with AD susceptibility are in chromosomes 2, 11, and 19.

Table 2. Top 10 mRNAs conferring susceptibility to AD.

Chr Transcript ID Position a Gene ^
β (

^
SE^

β
) p pFDR

11 ENST00000382160 1,718,425 KRTAP5-6 5.27 (1.97) 0.007 0.999
11 MICT00000062561 68,830,976 TPCN2 2.74 (1.03) 0.007 0.999
2 ENST00000272252 38,893,052 GALM 3.18 (1.20) 0.008 0.999

19 ENST00000263372 38,810,484 KCNK6 4.52 (1.71) 0.008 0.999
11 ENST00000292174 118,754,475 CXCR5 3.76 (1.45) 0.009 0.999
19 ENST00000601440 20,802,867 ZNF626 2.38 (0.92) 0.009 0.999
2 ENST00000406226 48,757,325 STON1 3.74 (1.46) 0.010 0.999
3 ENST00000318225 126,268,516 C3orf22 7.84 (3.07) 0.010 0.999
9 ENST00000307564 117,096,436 AKNA 2.34 (0.92) 0.010 0.999

17 ENST00000537494 73,632,675 SMIM5 2.16 (0.85) 0.010 0.999
a UCSC GRCh37/hg19 coordinates. β̂: logistic regression coefficient; Chr: chromosome; FDR: false discovery rate;
p: p-value; pFDR: FDR-corrected p-value; ŜEβ̂: estimated standard error of β̂.
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Figure 2. Manhattan plots showing mRNA signatures (a) conferring susceptibility to AD (p < 0.01
threshold, red line), (b) differentially expressed between study groups (p < 2.5 × 10−6 threshold, red
line), and (c) associated with ADAOO (p < 2.5 × 10−6 threshold, red line) in a sample of 15 individuals
with AD from Barranquilla, Colombia.

2.3. mRNAs Signatures Differentially Expressed Between Comparison Groups

We identified 154 differentially expressed mRNAs using Gamma regression with a
Type I error of 5%; 102 mRNAs were upregulated, and 52 were downregulated in individu-
als with AD compared to healthy controls (Figure 1b). Table 3 shows the top 10 differen-
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tially expressed mRNAs in our sample, and Figure 2b shows the distribution of p-values
across chromosomes. However, only ENST00000331581 (CADM1) and ENST00000382258
(TNFRSF19) were statistically significantly differentially expressed after FDR correction.

Table 3. Top 10 mRNAs differentially expressed between cases and healthy controls.

Chr Transcript Position Gene ^
β (

^
SE^

β
) p pFDR

11 ENST00000331581 115,047,015 CADM1 0.97 (0.16) 3.34 × 10−6 0.027
13 ENST00000382258 24,153,499 TNFRSF19 0.40 (0.06) 2.24 × 10−6 0.027
3 ENST00000318225 126,268,516 C3orf22 0.71 (0.14) 2.32 × 10−5 0.128

17 ENCT00000175321 42,030,339 PYY 0.82 (0.18) 1.74 × 10−4 0.692
19 ENST00000358491 21,688,366 ZNF429 0.83 (0.19) 2.16 × 10−4 0.692
2 ENST00000406226 48,757,325 STON1 0.72 (0.17) 2.50 × 10−4 0.692

19 ENST00000263372 38,810,484 KCNK6 0.82 (0.20) 3.52 × 10−4 0.833
7 ENCT00000407904 1,214,597 ZFAND2A 0.60 (0.15) 6.07 × 10−4 0.985
1 ENST00000427500 155,204,350 GBA 0.83 (0.22) 7.12 × 10−4 0.985
5 ENST00000509437 132,333,792 ZCCHC10 0.72 (0.18) 6.33 × 10−4 0.985

β̂: Gamma regression coefficient based on the identity link. Other conventions as in Table 2.

2.4. mRNAs Signatures Modifying ADAOO

We identified 2034 mRNAs that had a delaying effect on ADAOO (β̂ > 0) and
1468 mRNAs that accelerated ADAOO (β̂ < 0) in our individuals with AD, with a nom-
inal Type I error of 5%. Table 4 shows the top 10 mRNAs associated with ADAOO in
our sample. Interestingly, ENST00000257696 (β̂ = 4.34; HILPDA) and ENST00000304060
(β̂ = 4.79; ZNF440) delay ADAOO, whereas ENST00000263851 (β̂ = −17.31; IL7),
ENST00000340552 (β̂ = −12.6; LIMK2), and ENST00000230658 (β̂ = 11.05; ISL1) are
the top accelerators. However, only ENST00000340552 (LIMK2), which accelerates AD
onset by ~12.6 years (Table 4) showed a statistically significant association with ADAOO
after FDR correction.

Table 4. mRNAs modifying ADAOO. Conventions as in Table 3.

Chr Transcript Position Gene ^
β (

^
SE^

β
) p pFDR

22 ENST00000340552 31,644,473 LIMK2 −12.6 (1.06) 3.04 × 10−7 0.005
22 ENST00000215730 21,213,271 SNAP29 −5.59 (0.76) 2.50 × 10−5 0.096
22 ENST00000216139 51,176,624 ACR −7.21 (1.27) 2.14 × 10−4 0.096
5 ENST00000230658 50,679,225 ISL1 −11.05 (1.49) 2.29 × 10−5 0.096
4 ENST00000248706 53,728,457 RASL11B −6.18 (1.09) 2.15 × 10−4 0.096
7 ENST00000257696 128,095,945 HILPDA 4.34 (0.76) 2.00 × 10−4 0.096
8 ENST00000263851 79,645,007 IL7 −17.31 (2.96) 1.61 × 10−4 0.096

13 ENST00000282397 28,874,481 FLT1 −6.21 (1.01) 1.07 × 10−4 0.096
19 ENST00000304060 11,925,099 ZNF440 4.79 (0.79) 1.15 × 10−4 0.096
3 ENST00000320211 48,488,137 ATRIP −6.93 (1.08) 7.47 × 10−4 0.096

2.5. mRNAs Signatures Identified via ML

We identified several mRNAs with high accuracy for predicting AD diagnosis and
ADAOO using the one-rule (OneR) ML algorithm (Table 5). Notably, the ENST00000331581
(CADM1), ENST00000372572 (FOXJ3) and ENST00000311550 (GABRB3) mRNAs inde-
pendently achieved an accuracy of 95.4% for predicting AD diagnosis in the training
dataset (n = 21). Regarding ADAOO, ENST00000640218 (HNRNPU), ENST00000261245
(MNAT1), and ENST00000339562 (NR4A2) exhibited a remarkable ability to accurately
predict ADAOO in the training dataset (n = 11; Table 5).
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Table 5. Top mRNAs for AD diagnosis and ADAOO via ML in the training dataset.

Target Variable Chr Transcript Position Gene Accuracy

AD

11 ENST00000331581115,047,015 CADM1 0.954
1 ENST0000037257242,642,210 FOXJ3 0.954

15 ENST0000031155026,788,693 GABRB3 0.954
17 ENST0000029319072,838,162 GRIN2C 0.904
21 ENST0000031112446,933,690 SLC19A1 0.904
2 MICT00000202802171,678,607 GAD1 0.904
3 ENCT00000296543161,062,306 SPTSSB 0.904
1 ENST00000427500155,204,350 GBA 0.904

16 ENST0000057168811,641,578 LITAF 0.904
3 ENST0000063635852,017,294 ACY1 0.904

ADAOO

1 ENST00000640218245,013,602 HNRNPU 1.000
14 ENST0000026124561,201,480 MNAT1 1.000
2 ENST00000339562157,180,944 NR4A2 1.000

14 ENST0000030467721,249,210 RNASE6 1.000
2 ENST0000026373645,615,819 SRBD1 1.000

17 ENST0000039400139,533,902 KRT34 0.900
3 ENST00000264735192,958,914 HRASLS 0.900

20 ENCT0000026527920,349,595 INSM1 0.900
8 ENST00000313269145,064,226 GRINA 0.900
5 ENST00000257430112,073,585 APC 0.900

2.6. ML-Based Predictive Framework of AD Diagnosis

We evaluated the performance of several ML algorithms to construct a predictive
framework for AD diagnosis based on the 30 mRNAs with the highest predictive power
identified via the OneR ML algorithm (Supplementary Table S2). Figure 3a summarizes
their accuracy in the training dataset.
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sis for the xgbTree algorithm. ROC: receiver operating characteristic; AUC: area under the ROC curve.

Our findings show that the rf, xgbLinear, and xgbTree ML perform exceptionally well
in predicting AD diagnosis based on mRNA expression levels, achieving accuracies of
94.7%, 98%, and 99%, respectively (Table 6). Notably, the xgbTree algorithm exhibits low
standard deviation and coefficient of variation. In contrast, the avNNet, hdda, and knn
algorithms showed lower accuracy and more significant variability.
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Table 6. Performance of ML-based models for AD diagnosis in the training dataset. Best results are
shown in bold.

Algorithm
Accuracy

Mean Standard
Deviation

Coefficient of
Variation

avNNet 0.780 0.237 30.354
hdda 0.783 0.243 31.072
knn 0.783 0.234 29.858
LDA 0.857 0.238 27.796
lda2 0.857 0.238 27.796

rf 0.947 0.148 15.683
rpart 0.847 0.295 34.862

rpart1SE 0.847 0.295 34.862
rpart2 0.847 0.295 34.862

svmLinear 0.787 0.238 30.278
svmLinear2 0.787 0.238 30.278

svmPoly 0.820 0.228 27.802
svmRadial 0.807 0.227 28.113

treebag 0.927 0.224 24.147
xgbLinear 0.980 0.141 14.431
xgbTree 0.990 0.071 7.142

Further evaluation of the xgbTree algorithm confirmed its robust predictive capability
for AD diagnosis (Table 7). Analysis of the ROC curve and AUC for the xgbTree algorithm
across training and testing datasets suggest that this ML algorithm is capable of distin-
guishing individuals with AD from healthy controls and that ENST00000311550 (GABRB3)
is the most significant mRNA for predicting AD (Supplementary Figure S1).

Table 7. Performance metrics for predicting AD diagnosis based on the xgbTree algorithm.

Performance
Metric

Dataset

Training
(n = 21)

Testing
(n = 9)

AUC 1 0.875
Accuracy 1 0.875
Sensitivity 1 1
Specificity 1 0.75
Precision 1 1

2.7. Feature Selection and Model Refinement for AD Diagnosis

We applied the OneR algorithm to enhance our ML-based approach for AD diag-
nosis and narrowed the predictors to the top five mRNAs. Our analysis identified that
ENST00000311550 (GABRB3), ENST00000278765 (GGTLC1), ENST00000331581 (CADM1),
ENST00000372572 (FOXJ3), and ENST00000636358 (ACY1) have the highest predictive
power for AD diagnosis.

Subsequently, we assessed the performance of different ML algorithms based on
these mRNAs (Supplementary Table S4). Interestingly, some ML algorithms achieved
remarkable accuracy scores (i.e., avNNet, lda, lda2, svmLinear, svmLinear2, svmPoly,
treebag, xgbLinear, and xgbTree), while others, despite showing slightly lower accuracies
and higher variability, perform reasonably well (i.e., svmRadial, knn, and rf). This suggests
that ML algorithms using the top 5 mRNAs identified via OneR can distinguish between
individuals with AD and healthy controls in our sample. However, the xgbTree algorithm
is the preferred choice. This model achieves remarkable performance in training and
testing datasets, with the ROC curve and AUC values indicating that the ML-based model
is robust, generalizable, and capable of accurately distinguishing AD individuals from
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healthy controls (Supplementary Figure S1). The ENST00000311550 (GABRB3) mRNA is
the most important predictor.

To further enhance the prediction accuracy for AD diagnosis, we explored combinations
of mRNAs when using the xgbTree ML algorithm. Our goal was to identify the most effective
predictors for diagnosing AD. Thus, we assessed the predictive power of eight pairs of gene
transcripts. Of these, the pair ENST00000311550 (GABRB3) and ENST00000331581 (CADM1)
emerged as the most accurate, achieving an average accuracy of 95.8% in the training data (Sup-
plementary Figure S2). Variable importance revealed that, under this model, ENST00000311550
(GABRB3) is the most important predictor for AD diagnosis. ENST00000278765 (GGTLC1)
was included as a predictor for the final predictive model because it also demonstrated good
predictive power and robust performance metrics. The final model with these three mRNAs
achieved remarkable AUC, accuracy, sensitivity, specificity, and precision scores during the
training and testing phases (Supplementary Figure S2).

2.8. ML-Based Predictive Framework for ADAOO

Table 8 reports the performance of several ML algorithms for predicting ADAOO
based on the top 30 mRNAs identified via OneR (Table S3, Supplementary Material). Our
results indicate that the pls and known algorithms demonstrated superior performance;
the former achieved an RMSE of 6.519 and an MAE of 6.459, while the known achieved
RMSE and MAE values of 6.817 and 6.761, respectively.

Table 8. Performance of ML algorithms for predicting ADAOO based on the top 30 mRNAs.

Algorithm
Performance Measure

RMSE R2 MAE

avNNet 71.518 - 71.510
gamLoess 29.955 1 28.094

glm 29.955 1 28.094
knn 6.817 1 6.761
mlp 7.606 - 7.530
pls 6.519 1 6.459
rf 7.227 1 7.190

ridge 7.834 1 7.802
rpart 7.576 - 7.497

rpart1SE 7.576 - 7.497
svmLinear 10.067 1 10.060
svmPoly 6.969 1 6.887

svmRadial 7.234 1 7.168
treebag 7.587 - 7.506

xgbLinear 10.306 1 10.235
xgbTree 8.250 1 8.155

RMSE: Root Mean Squared Error, lower is better; MAE: Mean Absolute Error, lower is better; R2: coefficient
of determination, higher is better. “-” indicates that R2 values could not be estimated. Best results are shown
in bold.

ML algorithms were clustered into three groups (Supplementary Figure S3). Vari-
able importance analyses of the top performer algorithms revealed distinct prioritizations
for predicting ADAOO. For instance, HBMT00001385713 (LONRF1), ENCT00000265279
(INSM1), ENST00000370332 (GFI1), and ENST00000257430 (APC) are pivotal variables for
ADAOO prediction using rf (Figure 4a); HBMT00001385713 (LONRF1), ENST00000263736
(SRBD1), ENST00000304677 (RNASE6), and ENST00000640218 (HNRNPU) are identi-
fied as the most important by the xgbLinear algorithm (Figure 4b); and xgbTree ranks
ENST00000304677 (RNASE6), ENST00000640218 (HNRNPU), ENST00000602017 (PPP5D1),
ENST00000224950 (STN1), and ENST00000322088 (PPP2R1A) mRNAs as the most critical
ADAOO predictors in our cohort of individuals with AD (Figure 4c).
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2.9. Refining the ML-Based Model for ADAOO Prediction

We selected the top five mRNAs to construct pair combinations and tested their
ADAOO predictive power for the testing dataset using the rf, xgbLinear, and xgbTree
algorithms (Table 9). Among the distinct model combinations, the xgbTree algorithm with
ENST00000304677 (RNASE6) and ENST00000602017 (PPP5D1) as predictors achieved the
best performance (RMSE = 0.462, R2 = 0.993, MAE = 0.392; Table 9).

Table 9. Performance of refined rf, xgbLinear, and xgbTree ML models for predicting ADAOO in the
testing data. Best results are shown in bold.

Algorithm Model mRNAs Combination RMSE R2 MAE

rf 1 HBMT00001385713,
ENCT00000265279 2.701 0.743 2.156

2 HBMT00001385713,
ENST00000370332 1.698 0.894 1.569

3 HBMT00001385713,
ENST00000257430 0.974 0.975 0.840

xgbLinear 1 HBMT00001385713,
ENST00000263736 3.484 0.656 1.747

2 HBMT00001385713,
ENST00000304677 5.500 0.303 2.750

3 HBMT00001385713,
ENST00000640218 2.554 0.815 1.278

xgbTree 1 ENST00000304677,
ENST00000640218 1.564 0.979 1.218

2 ENST00000304677,
ENST00000602017 0.462 0.993 0.392

3 ENST00000304677,
ENST00000224950 0.740 0.999 0.613

4 ENST00000304677,
ENST00000322088 2.054 0.983 1.719

3. Discussion

This study explored the utility of various data analytics and machine learning (ML) tech-
niques for identifying patterns in mRNA expression data related to Alzheimer’s disease (AD).
The key findings are as follows: ML methods successfully identified differentially expressed
mRNAs in AD, providing insights into their roles in disease pathogenesis. Logistic regres-
sion analysis revealed 385 differentially expressed mRNAs, 82 showing a protective effect
and 303 associated with increased AD risk. Secondly, an ML-based framework predicts
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AD based on mRNA profiles, demonstrating promise for early detection and personalized
intervention strategies. Several mRNA transcripts, including ENST00000331581 (CADM1),
ENST00000372572 (FOXJ3), and ENST00000311550 (GABRB3), exhibited exceptional predic-
tive power, accurately distinguishing AD cases from controls. Lastly, the study extended
to predicting the age of AD onset (ADAOO), highlighting the potential for personalized
treatment planning based on individual risk assessments. Key mRNA transcripts, such as
ENST00000304677 (RNASE6) and ENST00000602017 (INPP5D), were identified as crucial
predictors of ADAOO by advanced ML algorithms such as xgbTree and RF [27,28].

Logistic regression analysis revealed 385 differentially expressed mRNAs, with
82 demonstrating a protective effect and 303 associated with an increased risk of AD.
Although these mRNAs did not reach statistical significance (Table 2), the biological rele-
vance of these mRNAs could play an important role in AD pathogenesis.

We used Gamma regression to identify differentially expressed mRNAs and their
association with AD and ADAOO as complementary analyses. A total of 154 differentially
expressed mRNAs, 102 upregulated and 52 downregulated in individuals with AD, were
identified. Of these, two mRNAs, ENST00000331581 (CADM1) and ENST00000382258
(TNFRSF19), were statistically significant after multiple testing corrections were applied
(Table 3). These mRNAs provide supporting evidence of the role of the CADM1 and
TNFRSF19 in AD pathogenesis. Interestingly, CADM1 is implicated in synaptic assembly
and has known isoforms, such as SP3, identified in proteogenomic studies [29,30]. The
detection of these isoforms in humans and mice, along with their altered expression in
AD models, highlights their potential role in neurodegenerative processes [29].

In our study, an mRNA within the TNFRSF19 (TROY) gene also emerged as an
important biomarker. Previous studies have linked TNFRSF19 elevated expression to
both intracranial aneurysms and coronary artery disease [31,32]. Furthermore, its strong
correlation with inflammatory markers and immune-related genes highlights its potential
role in chronic inflammation and vascular abnormalities. Indeed, elevated expression
of CADM1 and TNFRSF19 in AD models emphasizes their critical role in inflammatory
processes associated with AD [31,32].

We identified that expression levels in ENST00000340552 (LIMK2) delay ADAOO by
~12 years (Table 4). LIMK2 is a protein crucial for controlling the dynamics of the cell’s
internal framework, known as the actin cytoskeleton. This process is vital for shaping cell
structure and movement. When activated by ROCK1, LIMK2 can modify another protein
called cofilin, which normally destabilizes the actin network. By phosphorylating cofilin,
LIMK2 prevents it from breaking down actin, allowing cells to maintain their shape and
move effectively. This regulation of actin is essential for fundamental cellular activities like
cell division, apoptosis, and cell migration [33]. Researchers have also linked abnormalities
in the ROCK1/LIMK2/cofilin pathway to various types of cancer [34,35]. LIMK2 is also
involved in neurodevelopmental disorders and neurodegenerative diseases, including
AD, Parkinson’s, and schizophrenia [36]. Recent studies show that targeting LIMK2 in
cancer and neurological disorders is promising, as LIMK2 inhibitors have shown efficacy in
preclinical models [37–39]. Thus, identifying an mRNA regulating LIMK2 as significantly
associated with delayed ADAOO emphasizes its potential as a neuroprotective factor.
Given its role in actin dynamics and broad impact on cellular processes, LIMK2 represents a
valuable target for therapeutic strategies aimed at delaying the onset or progression of AD.

Using the OneR ML algorithm, we identified that transcripts ENST00000331581 (CADM1),
ENST00000372572 (FOXJ3), and ENST00000311550 (GABRB3) each achieved an accuracy of
95.4% for distinguishing AD cases from controls (Table 5) [36,40–43]. Similarly, the perfor-
mance of an ML-based predictive framework for AD diagnosis using 16 ML algorithms and
the expression levels of several mRNAs was rigorously evaluated and assessed (Figure 3).
Notably, RF, xgbLinear, and xgbTree emerged as top performers (Table 6). The subsequent
application of the OneR ML algorithm further refined our predictive approach by identify-
ing five key mRNA transcripts—ENST00000311550, ENST00000278765, ENST00000331581,
ENST00000372572, and ENST00000636358 (Supplementary Figures S1 and S2). The fact
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that the gene regulated by ENST00000311550 is particularly involved in critical biologi-
cal processes related to neurodegeneration and synaptic function underscores its poten-
tial as a key biomarker for AD diagnosis [44–46]. Analysis of GABAergic signaling com-
ponents in post-mortem human brain tissue revealed significant transcriptional downreg-
ulation of GABA receptors (GABBR2, GABRA1, GABRB3, GABRG2), GABA synthesizing
enzymes (GAD1, GAD2), and other neurotransmitter receptors (GRIK1, GRIK2), implicat-
ing a disruption in the excitatory/inhibitory balance that contributes to cognitive decline in
AD [44]. These findings align with previous studies linking alterations in GABAergic path-
ways to AD pathology, suggesting potential therapeutic targets aimed at restoring neuronal
function through modulation of these pathways [46]. Moreover, insights from genetic studies
in epilepsy highlight parallels in synaptic dysfunction, reinforcing the broader implications
of disrupted neuronal networks in neurodegenerative diseases like AD [45,46]. In addition,
genes regulated by ENST00000331581, ENST00000372572, and ENST00000636358 are impli-
cated in essential processes such as cell adhesion, synaptic function, and neuronal signaling,
which are crucial in the context of neurodegenerative diseases like AD [36,41,43,47,48].

We developed and comprehensively assessed the performance of an ML-based frame-
work for predicting ADAOO (Table 8). Among the algorithms tested, avNNet exhibited
poor performance metrics, whereas knn, pls, xgbTree, xgbLinear, and RF consistently
demonstrated superior predictive accuracy with low RMSE and MAE values (Table 8). No-
tably, the xgbTree algorithm exhibited exceptional performance in predicting ADAOO, with
an impressively low RMSE and high R2 values (Table 9). Key mRNA transcripts such as
ENST00000304677 and ENST00000602017 were identified as pivotal for predicting ADAOO
by xgbTree, which suggests their critical role in delineating ADAOO in our sample (Table 9).
ENST00000304677, located within the RNASE6 gene, plays an important role in innate im-
mune responses and has been linked to neuroinflammation, a characteristic feature of AD.
Specifically, RNASE6 expression correlates with myeloid-derived suppressor cells (MDSCs),
suggesting its involvement in immune modulation that may influence susceptibility to
ADAOO. RNASE6 expression interacts with APOE-ε4 status, indicating that higher levels
of RNASE6 are associated with poorer memory outcomes among APOE-ε4 carriers [27,49].
RNASE6 encodes an antimicrobial peptide involved in innate immune responses and has
been identified in gene co-expression networks with other inflammatory genes implicated
in AD, such as TREM2 and MS4A [50,51].

Furthermore, ENST00000602017, identified as crucial in the predictive model, regulates
the Inositol polyphosphate-5-phosphatase (INPP5D) gene, also known as SHIP1, which
has emerged as significant in AD pathophysiology, particularly associated with late-onset
AD (LOAD). INPP5D is selectively expressed in brain microglia and has been linked
to LOAD through genome-wide association studies [28]. Despite its critical role, the
precise impact of INPP5D on disease onset and progression remains unclear. Differential
gene expression analysis investigated INPP5D in AD, revealing its upregulation in LOAD
and positive correlation with amyloid plaque density. In the 5xFAD amyloid mouse
model, INPP5D expression increased with disease progression, particularly in plaque-
associated microglia. Notably, depletion of microglia using the colony-stimulating factor
receptor-1 antagonist PLX5622 entirely abolished the elevated Inpp5d expression levels in
5xFAD mice.

Similarly, RF revealed the significance of HBMT00001385713 and ENST00000257430 in
the ML-based predictive models of ADAOO (Table 9). ENST00000257430, associated with
the APC/C-Cdh1 pathway, plays a crucial role in AD pathophysiology [52]. The APC/C-
Cdh1 complex, an E3 ubiquitin ligase, regulates synaptic plasticity and neuronal survival.
In AD, aberrant activation of Aβ induces phosphorylation of Cdh1, disrupting the APC/C-
Cdh1 complex. This disruption leads to the accumulation of substrates such as Rock2 and
Cyclin B1 in affected brain regions, contributing to synaptic loss and neurotoxicity. Studies
in neurons and animal models have demonstrated that maintaining normal APC/C-Cdh1
activity may mitigate Aβ-induced neurotoxic effects, suggesting potential therapeutic
targets for AD [53].
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In summary, our study showed that using ML algorithms to assess AD risk and
ADAOO based on demographic and genetic data is promising for clinical applications, as
indicated by the RMSE, MAE, and R2 performance metrics. Genetic variants are essential
predictors in our ML models for AD and ADAOO. These models can facilitate personal-
ized assessments, ultimately advancing predictive genomics and personalized medicine
approaches for AD and improving individualized treatment strategies for patients at risk
of developing the disease [54–56]. Thus, integrating mRNA biomarkers with advanced
ML methods shows potential for early ADAOO detection and intervention, enhancing
clinical management strategies and improving our understanding and treatment of AD.

Integrating ML and mRNA data in AD research presents a robust framework for
advancing our understanding of the disease [54–56]. Identified mRNAs associated with
AD risk, protection, and ADAOO prediction establish a solid foundation for future in-
vestigations, particularly in Latin American and Caribbean regions [6,26,57]. Validating
these findings in more extensive, diverse cohorts and exploring the biological roles of the
identified mRNAs could unveil novel insights into AD pathogenesis. Furthermore, these
findings hold significant therapeutic potential, as targeting mRNAs linked to AD risk or
protection could lead to the development of novel treatments, including gene therapies
aimed at modulating mRNA expression and potentially altering disease trajectories [54–56].

4. Materials and Methods
4.1. Participants

We recruited 30 participants (15 with a diagnosis of AD and 15 healthy controls) at
the Instituto Colombiano de Neuropedagogía (ICN) in Barranquilla, Colombia. The ICN
team determined the candidates’ eligibility based on the Montreal Cognitive Assessment
(MoCA) results [58] and the inclusion criteria described elsewhere [13].

Patients were classified as affected by AD if they met the DSM-V criteria [59] and
had a Mini-Mental State Examination (MMSE) [60] score between 0 and 18 points. Ex-
clusion criteria included other neurological or major psychiatric disorders, psychoactive
substance use, excessive alcohol consumption, and inability to complete the clinical studies
as previously described [13]. Healthy controls were non-family volunteers over 65 years
old, without suspected AD, and with an MMSE score between 19 and 29. Individuals
with depression, mild cognitive impairment (MCI), dementia, other neurological disorders,
major psychiatric illnesses, or those using psychoactive substances or consuming excessive
alcohol were excluded.

4.2. Neuropsychological Assessment

After explaining to potential participants what the study consisted of and obtaining in-
formed consent, an exhaustive neuropsychological evaluation was performed, which included
the following tests: Boston Denomination Test [61,62], Rey–Osterrieth Complex Figure [63],
Rey Auditory Verbal Learning Test (RAVLT) [64], Trail Making Test (TMT) [65,66], Symbol
Digit Modality Test (SDMT) [67], Stroop Color and Word Test [68], Token Test [69], Benton’s
Visual Retention Test (BVRT) [70], Clock Drawing Test [71], Memory Scale subtest of the
Wisconsin Card Testing Test [72], Geriatric Depression Screening Test [73], Global Deterio-
ration Scale (GDS) [74], Barthel Functional Index [75], and Neuropsychiatric Inventory [76].
Additional data for each participant, such as age at the beginning of the study, sex, educational
level, marital status, weight, and height, were also recorded through the clinical history. In
participants diagnosed with AD, the AD age of onset (ADAOO) of the disease was defined as
the age at onset of symptoms according to previous research [77,78].

4.3. RNA Isolation and Extraction

Blood samples were collected to isolate circulating exosomes as described elsewhere [13].
Exosomes were isolated using the Total Exosome Isolation Reagent commercial kit (cata-
logue #4478360, Thermo Fisher Scientific, Inc., Waltham, MA, USA) following the manu-
facturer’s instructions with minor modifications standardized at Universidad del Norte,
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Barranquilla laboratories. The resulting exosomes were characterized by scanning electron
microscopy (SEM). For this purpose, exosomes were encapsulated with nanodiamond
particles, and their sizes were confirmed.

For the extraction of RNA contained in exosomes, a technique based on the acid
phenol–chloroform method was standardized in the laboratory of the Universidad del
Norte [13]. Extracted RNA was resuspended with 50 µL of RNAse-free water and then
subjected to DNase I (catalogue #EN0521, Thermo Fisher Scientific, Inc., USA) following the
manufacturer’s instructions. Finally, the concentration and indexes of the readings obtained
with the optical densities (ODs) 260/230 and 260/280 were measured in a NanoDrop 2000
(Thermo Fisher Scientific, Inc., USA) and corresponded to the RNA quality indexes.

4.4. mRNA Microarray Study

For mRNA identification and differential expression analysis, the 30 RNA samples
(15 cases with AD and 15 healthy controls) were sent to Arraystar, Inc. (Rockville, MD, USA),
where RNA quality control, labelling, and hybridization were performed according to
Agilent’s single-color microarray-based gene expression analysis protocol (Agilent Tech-
nologies, Santa Clara, CA, USA) with minor modifications.

4.4.1. Quality Control

Each sample was subjected to retrotranscription to obtain complementary DNA
(cDNA), amplified, and transcribed back to its complementary RNA (cRNA). In this
step, amplification and incorporation of the cyanine 3 (Cy3) fluorescent dye labelling
was achieved simultaneously along the entire length of the 3′ unbiased transcript using
a random priming method (Arraystar Flash RNA Labelling Kit, Arraystar, Inc., Rockville,
MD, USA). The labelled cRNAs were purified with the RNeasy mini kit (Qiagen, Hilden,
Germany). In this step, reagent residues and the excess of cyanine not incorporated were
eliminated. As a control of the amplification and labelling process of the samples, the
concentration of the cRNA was obtained, and the rate of cyanine incorporation or specific
activity (pmol of Cy3 per µg cRNA). Hybridization was allowed to continue if the cRNA
concentration was >1.65 µg and the specific activity was >9 pmol of Cy3 per µg of cRNA.
Otherwise, cRNA preparation was repeated.

4.4.2. Hybridization and Microarray Scanning

A total of 1 µg of each labelled cRNA was fragmented by adding five µL of blocking
agent 10x and 1 µL of fragmentation buffer 25x. The mixture was heated to 60 ◦C for
30 min, and then 25 µL of hybridization buffer 2x GE was used to dilute the labelled cRNA;
50 µL of hybridization solution was dispensed onto a hybridization plate, which was then
assembled with an lncRNA expression microarray plate. The plates were incubated for
17 h at 65 ◦C in an Agilent hybridization oven. The hybridized arrays were washed and
scanned using an Agilent scanner (equipment #G2505C, Agilent Technologies, Santa Clara,
CA, USA).

4.4.3. mRNA Microarray and Data Normalization

The Arraystar Human LncRNA Arrays V5 is designed to systematically profile long
non-coding RNAs (lncRNAs) and the entire set of protein-coding mRNAs: about 39,317
lncRNAs (8393 Gold Standard LncRNAs and 30,924 Reliable LncRNAs) and 21,174 mRNA
coding transcripts. Arraystar, Inc. maintains high-quality proprietary lncRNA transcriptome
databases that extensively collect lncRNAs through all major public databases and repositories,
knowledge-based mining of scientific publications, and our lncRNA discovery pipelines,
which include FANTOM5 CAT (version 1), GENECODE (version 29), RefSeq (updated to
November 2018), BIGTranscriptome (version 1), knownGene (updated to November 2018),
lncRNAdb, LncRNAWiki, RNAdb, NRED, CLS FL, NONCODE (version 5), MiTranscriptome
(version 2), and an lncRNA/mRNA discovery pipeline from more than 47 Tb RNA-seq data.
Each transcript is represented by a specific exon or splice junction probe, which can identify
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individual transcripts accurately. Positive and negative probes for housekeeping genes were
printed onto the array for hybridization quality control.

Quantile normalization and subsequent data processing were performed using the
GeneSpring GX v12.1 software package (Agilent Technologies, Santa Clara, CA, USA).
After normalization, mRNAs were flagged as present or marginal (“all-target value”) in at
least 15 of 30 samples chosen for further analysis.

4.5. Identification of mRNAs Conferring Susceptibility to AD

mRNAs conferring susceptibility to AD were identified using Generalized Linear
Models [79]. For the jth mRNA, a Logistic regression model of the form AD ~ mRNAj +
Age + Sex + Schooling was fitted using the glm() function in R version 4.4.1 [80], where Age
is the age of the individual at the beginning of the study and Schooling corresponds to years
of education. Subsequently, we extracted the estimated regression coefficient associated
with mRNAj, denoted as β̂ j, the corresponding standard error ŜEβ̂ j

and the test statistic

computed as tj =
β̂ j

ŜEβ̂j

. For interpretation purposes, β̂ j > 0 implies that the jth mRNA

confers susceptibility to AD; β̂ j < 0 implies that the jth mRNA has a protective effect;
and β̂ j = 0 implies that the jth mRNA does not affect AD susceptibility (j = 1, 2, . . ., m).
Under the null hypothesis, tj ∼ tn−p. In our context, n = 30 and p = 5. The p-value for
the jth mRNA is Pj = 2Pr

(
t25 >

∣∣tj
∣∣). Thus, p-values P1, P2, P3, . . . , Pm are collected. As

m is usually large, p-values were corrected for multiple testing using the false discovery
rate (FDR) [81,82]. mRNAs with FDR-corrected p-values below 5% (pFDR < 0.05) were
statistically significantly associated with AD susceptibility.

4.6. mRNA Differentially Expressed Between AD Groups

mRNAs differentially expressed between individuals with AD and healthy controls
were identified using a Gamma regression model with an identity link of the form mRNAj
~ AD + Age + Sex + Schooling was fitted to the data as implemented in the glm() function
of R. For the jth mRNA, the estimated regression coefficient associated with AD, denoted
as β̂ j, the standard error ŜEβ̂ j

, and the test statistic tj were extracted (for more details, see

Section 4.5). For interpretation purposes, β̂ j > 0 implies that the jth mRNA is upregu-
lated in individuals with AD; β̂ j < 0 implies that the jth mRNA is downregulated; and
β̂ j = 0 implies that there is no difference in the average expression levels of the jth mRNA
between the comparison groups. The p-value of AD for the jth mRNA is calculated as
Pj = 2Pr

(
t25 >

∣∣tj
∣∣). Further, the collection of p-values P1, P2, P3, . . . , Pm was corrected

for multiple testing using FDR, with only those with pFDR < 0.05 considered differentially
expressed between individuals with AD and healthy controls.

4.7. mRNA Associated with ADAOO

mRNAs potentially associated with ADAOO were identified using a Gamma regres-
sion model of the form ADAOO ~ mRNAj + Age + Sex + Schooling with an identity
link. Next, the regression coefficient associated with mRNAj, denoted as β̂ j, as well as the
standard error ŜEβ̂ j

and the test statistic tj, were extracted. In this case, only individuals

with AD were considered for analysis. For interpretation purposes, β̂ j > 0 implies that the
jth mRNA delays ADAOO; β̂ j < 0 implies that the jth mRNA accelerates ADAOO; and
β̂ j = 0 implies that the jth mRNA has no effect on ADA. The p-value for the jth mRNA
is calculated as Pj = 2Pr

(
t10 >

∣∣tj
∣∣). Therefore, mRNAs with pFDR < 0.05 were associated

with ADAOO.

4.8. Identification of mRNA Signatures Relevant to AD and ADAOO Using ML

We utilized the OneR package [83,84] in R to construct a simple and interpretable
rule-based predictive model for AD and ADAOO. The OneR ML algorithm generates one-
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rule models for each predictor in the data and selects the single most predictive attribute
for predicting an outcome variable of interest [83,84]. In this case, the mRNA expression
levels were included as predictor variables, and the outcome variables were AD diagnosis
(0: control; 1: case) and ADAOO. For each mRNA, OneR counts how often each class
(AD diagnosis or a categorized version of ADAOO) appears, finds the most frequent class,
makes a rule that assigns that class to the mRNA expression level, and calculates the error
of that rule.

4.9. ML-Based Predictive Framework with mRNA Signatures

We used the caret package [85,86] in R to construct predictive models of AD status
(0: control; 1: case) using the expression levels of mRNAs and demographic variables
(i.e., age at the beginning of the study, sex, and years of education) as predictors. This pack-
age implements a series of ML algorithms and a comprehensive framework for building,
testing, and validating ML models for classification and regression [85,86].

To develop ML models for AD, we employed several algorithms: Classification
and Regression Tree (CART), Bagged CART, Random Forest (RF), XGBoost (xgbTree and
xgbLinear), Support Vector Machines (SVMs), Linear Discriminant Analysis (lda), K-nearest
Neighbors (knn), and Model Averaged Neural Network (avNNet). These algorithms were
selected for their capacity to manage complex relationships in the data and deliver robust
predictions. For details on these algorithms and their parameters, see Table S1 of the
Supplementary Material. The dataset (n = 30) was partitioned into training (70%, n = 21)
and testing (30%, n = 9) datasets. The performance of each algorithm was evaluated using
accuracy metrics derived from the cross-validation process, which emphasizes showing the
models’ predicted outcomes compared to actual results [87,88]. Each ML-based model was
evaluated using the accuracy, the Receiver Operating Characteristic (ROC) curve, the area
under the ROC curve (AUC), sensitivity, specificity and precision. These metrics assess
how well the model predictions align with actual outcomes, with higher values indicating
better performance [87,89].

We constructed an ML-based predictive framework for ADAOO. In addition to the
ML algorithms previously mentioned, the performance of Ridge Regression (ridge), Gener-
alized Linear Models (GLM), Generalized Additive Models (gam) using Locally Estimated
Scatterplot Smoothing (LOESS; gamLoess), Multi-Layer Perceptron (mlp), and Partial Least
Squares (pls) was also assessed (Supplementary Table S1). The original dataset (n = 15)
was partitioned into training (n = 11) and testing (n = 4) datasets using the same propor-
tions. As ADOO is a numerical variable, the performance of the ML-based models was
assessed using the Mean Absolute Error (MAE), Mean Squared Error (MSE), and the coeffi-
cient of determination (R2). All models for AD diagnosis or ADAOO were trained using
mRNA expression levels as predictors and utilized a 10-fold cross-validation procedure.
This approach was specifically designed to ensure unbiased evaluations and enhance our
understanding of how the models will likely perform on future unseen data.

5. Conclusions

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized
by cognitive decline, primarily due to the accumulation of amyloid beta (Aβ) plaques and
tau tangles in the brain [90]. Current diagnostic methods often rely on clinical assessments
and imaging techniques. However, a growing interest in molecular biomarkers, particu-
larly messenger RNA (mRNA) expression profiles, may enhance diagnostic accuracy and
provide insights into the disease mechanisms in AD [15,17,91].

This study provides a framework for integrating ML and mRNA expression analysis,
paving the way for personalized medicine approaches in AD. By identifying specific
mRNAs associated with AD diagnosis and age of onset (ADAOO), we contribute to a deeper
understanding of the biological underpinnings of AD and its progression.

Our findings reveal that after false discovery rate (FDR) correction, only ENST00000331581
(CADM1) and ENST00000382258 (TNFRSF19) were statistically significantly differentially ex-
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pressed between the comparison groups (Table 3). In addition, ENST00000340552 (LIMK2) was
strongly associated with Alzheimer’s disease age of onset (ADAOO), accelerating AD onset by
approximately 12.6 years (Table 4). Based on machine learning (ML) algorithms, the researchers
identified that the expression levels of ENST00000331581 (CADM1), ENST00000372572 (FOXJ3),
and ENST00000311550 (GABRB3) achieved an accuracy of 95.4% for predicting AD diagnosis
(Table 5). Similarly, the expression levels of ENST00000640218 (HNRNPU), ENST00000261245
(MNAT1), and ENST00000339562 (NR4A2) showed remarkable performance in accurately
predicting ADAOO (Table 5).

The use of ML algorithms combined with mRNA expression data offers a promis-
ing avenue for early diagnosis and personalized treatment strategies. Here, we further
investigated the predictive power of various ML algorithms for predicting AD diagnosis
and ADAOO based on mRNA expression. ENST00000311550 (GABRB3) emerged as the
most significant predictor for AD diagnosis, and additional mRNAs—ENST00000278765
(GGTLC1), ENST00000331581 (CADM1), ENST00000372572 (FOXJ3), and ENST00000636358
(ACY1)—were critical predictors of AD diagnosis (Supplementary Figure S1). Notably, these
mRNAs demonstrated exceptional performance, distinguishing individuals with AD from
healthy controls (Supplementary Figure S1). For predicting ADAOO, ENST00000304677
(RNASE6) and ENST00000602017 (PPP5D1) have achieved the best performance metrics
in the testing data, suggesting that the prediction error for ADAOO is limited to a few
months (Table 9).

While our findings are promising, this study has several limitations regarding pop-
ulation characteristics and sample diversity. First, the relatively small sample size may
restrict the generalizability of the results, requiring further validation in larger, more diverse
cohorts to confirm the reliability of these biomarkers and their roles in AD. Second, the
stringent inclusion and exclusion criteria may create a homogeneous sample that does
not adequately represent the variability of AD in the broader population, including differ-
ent clinical subtypes. Lastly, individual variability in disease progression and comorbid
conditions can mask treatment effects and challenge data interpretation.

Future research should focus on several key areas to advance our understanding of AD.
First, conducting larger-scale studies is essential to validate the identified mRNA biomark-
ers across diverse populations, ensuring their robustness and applicability in clinical
settings. Second, exploring the biological roles of CADM1, TNFRSF19, and LIMK2 through
functional studies will help elucidate their contributions to neurodegenerative processes
and AD pathogenesis. Finally, investigating potential therapeutic strategies aimed at modu-
lating the expression of these mRNAs or targeting their associated pathways could provide
innovative approaches to delay or prevent the onset of AD. By focusing on these areas,
future studies can significantly enhance diagnostic accuracy and therapeutic interventions
for AD.

In summary, this study highlights the potential of ML combined with exosomal mRNA
expression analysis in advancing the understanding of AD. The identified mRNA tran-
scripts and the robust predictive models developed offer a promising avenue for more
accurate and early diagnosis, ultimately leading to improved patient outcomes. Contin-
ued refinement of these models and further investigation into the underlying biological
mechanisms will be crucial in translating these findings into clinical practice and driving
therapeutic innovations.
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3. Öztan, G.; İşsever, H. Molecular Mechanisms and Genetics of Alzheimer’s Disease. Turk. J. Biochem. 2023, 48, 218–229. [CrossRef]
4. Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb.

Perspect. Med. 2011, 1, a006189. [CrossRef]
5. Suresh, S.; Singh, S.A.; Rushendran, R.; Vellapandian, C.; Prajapati, B. Alzheimer’s Disease: The Role of Extrinsic Factors in Its

Development, an Investigation of the Environmental Enigma. Front. Neurol. 2023, 14, 1303111. [CrossRef]
6. Ramos, C.; Aguillon, D.; Cordano, C.; Lopera, F. Genetics of Dementia: Insights from Latin America. Dement. Neuropsychol. 2020,

14, 223–236. [CrossRef]
7. Vélez, J.I.; Lopera, F.; Silva, C.T.; Villegas, A.; Espinosa, L.G.; Vidal, O.M.; Mastronardi, C.A.; Arcos-Burgos, M. Familial

Alzheimer’s Disease and Recessive Modifiers. Mol. Neurobiol. 2020, 57, 1035–1043. [CrossRef]
8. Vélez, J.I.; Lopera, F.; Patel, H.R.; Johar, A.S.; Cai, Y.; Rivera, D.; Tobón, C.; Villegas, A.; Sepulveda-Falla, D.; Lehmann, S.G.;

et al. Mutations Modifying Sporadic Alzheimer’s Disease Age of Onset. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016,
171, 1116–1130. [CrossRef]

9. Fortea, J.; Pegueroles, J.; Alcolea, D.; Belbin, O.; Dols-Icardo, O.; Vaqué-Alcázar, L.; Videla, L.; Gispert, J.D.; Suárez-Calvet,
M.; Johnson, S.C.; et al. APOE4 Homozygosity Represents a Distinct Genetic form of Alzheimer’s Disease. Nat. Med. 2024,
30, 1284–1291. [CrossRef]

10. Sepulveda-Falla, D.; Chavez-Gutierrez, L.; Portelius, E.; Vélez, J.I.; Dujardin, S.; Barrera-Ocampo, A.; Dinkel, F.; Hagel, C.; Puig,
B.; Mastronardi, C.; et al. A Multifactorial Model of Pathology for Age of Onset Heterogeneity in Familial Alzheimer’s Disease.
Acta Neuropathol. 2021, 141, 217–233. [CrossRef]

11. Quiroz, Y.T.; Aguillon, D.; Aguirre-Acevedo, D.C.; Vasquez, D.; Zuluaga, Y.; Baena, A.Y.; Madrigal, L.; Hincapié, L.; Sanchez, J.S.;
Langella, S.; et al. APOE3 Christchurch Heterozygosity and Autosomal Dominant Alzheimer’s Disease. N. Engl. J. Med. 2024,
390, 2156–2164. [CrossRef] [PubMed]

12. Sepulveda-Falla, D.; Vélez, J.I.; Acosta-Baena, N.; Baena, A.; Moreno, S.; Krasemann, S.; Lopera, F.; Mastronardi, C.A.; Arcos-
Burgos, M. Genetic Modifiers of Cognitive Decline in PSEN1 E280A Alzheimer’s Disease. Alzheimer’s Dement. 2024, 20, 2873–2885.
[CrossRef] [PubMed]

https://doi.org/10.1002/alz.13016
https://doi.org/10.3389/fnagi.2022.1018180
https://www.ncbi.nlm.nih.gov/pubmed/36275000
https://doi.org/10.1515/tjb-2023-0049
https://doi.org/10.1101/cshperspect.a006189
https://doi.org/10.3389/fneur.2023.1303111
https://doi.org/10.1590/1980-57642020dn14-030004
https://doi.org/10.1007/s12035-019-01798-0
https://doi.org/10.1002/ajmg.b.32493
https://doi.org/10.1038/s41591-024-02931-w
https://doi.org/10.1007/s00401-020-02249-0
https://doi.org/10.1056/NEJMoa2308583
https://www.ncbi.nlm.nih.gov/pubmed/38899694
https://doi.org/10.1002/alz.13754
https://www.ncbi.nlm.nih.gov/pubmed/38450831


Int. J. Mol. Sci. 2024, 25, 12293 18 of 21

13. Mosquera-Heredia, M.I.; Vidal, O.M.; Morales, L.C.; Silvera-Redondo, C.; Barceló, E.; Allegri, R.; Arcos-Burgos, M.; Vélez, J.I.;
Garavito-Galofre, P. Long Non-Coding RNAs and Alzheimer’s Disease: Towards Personalized Diagnosis. Int. J. Mol. Sci. 2024,
25, 7641. [CrossRef] [PubMed]

14. Vélez, J.I.; Samper, L.A.; Arcos-Holzinger, M.; Espinosa, L.G.; Isaza-Ruget, M.A.; Lopera, F.; Arcos-Burgos, M. A Comprehensive
Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease.
Diagnostics 2021, 11, 887. [CrossRef] [PubMed]

15. Ghosh, A.; Mizuno, K.; Tiwari, S.S.; Proitsi, P.; Gomez Perez-Nievas, B.; Glennon, E.; Martinez-Nunez, R.T.; Giese, K.P. Alzheimer’s
Disease-Related Dysregulation of MRNA Translation Causes Key Pathological Features with Ageing. Transl. Psychiatry 2020,
10, 192. [CrossRef]

16. Riscado, M.; Baptista, B.; Sousa, F. New RNA-Based Breakthroughs in Alzheimer’s Disease Diagnosis and Therapeutics.
Pharmaceutics 2021, 13, 1397. [CrossRef]

17. Donaghy, P.C.; Cockell, S.J.; Martin-Ruiz, C.; Coxhead, J.; Kane, J.; Erskine, D.; Koss, D.; Taylor, J.-P.; Morris, C.M.; O’Brien,
J.T.; et al. Blood MRNA Expression in Alzheimer’s Disease and Dementia with Lewy Bodies. Am. J. Geriatr. Psychiatry 2022,
30, 964–975. [CrossRef]

18. van Bergeijk, P.; Seneviratne, U.; Aparicio-Prat, E.; Stanton, R.; Hasson, S.A. SRSF1 and PTBP1 Are Trans-Acting Factors That
Suppress the Formation of a CD33 Splicing Isoform Linked to Alzheimer’s Disease Risk. Mol. Cell. Biol. 2019, 39, e00568-18.
[CrossRef]
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