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Abstract

Due to the high prevalence of Alzheimer’s disease (AD) in adults with Down syndrome

(DS), trisomy 21 is now considered a genetic form of AD (DSAD). A better understand-

ing of factors that can prevent or delay AD is vital to improve outcomes for adults with

DS. In this narrative review, we apply AD and cognitive aging research frameworks to

study resistance and resilience in DSAD. Given the variability in the timing of pathol-

ogy and symptoms, we discuss the evidence supporting the role of genetic, biological,

socio-behavioral, lifestyle, and environmental factors in resistance and resilience to
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DSAD.We also consider how co-occurring health conditions inDSmay influence resis-

tance and resilience, and how methods from AD research can be applied to DSAD.

Ultimately, this framework aims to guide future research and translate findings into

clinical interventions to improve outcomes in DSAD.

KEYWORDS

brainmaintenance, brain reserve, cognitive reserve, cognitive resilience, dementia, trisomy 21

Highlights

∙ Definitions of resistance and resilience in the genetic form of Alzheimer’s disease

(DSAD) are proposed for guiding the field.

∙ Variability in the timing of AD pathology and symptoms suggests the potential for

resistance and resiliencemechanisms in DSAD.

∙ Genetic, biological, socio-behavioral, lifestyle, and environmental factors have the

potential to build resistance or resilience in DSAD.

∙ Future research will require longitudinal and experimental designs, life course

approaches, and large cohort studies.

1 INTRODUCTION

Down syndrome (DS) results from the full or partial triplication of

chromosome 21 (chr21) or mosaicism. It is the leading known genetic

cause of intellectual disability, with more than 5.8 million people

worldwide having DS.1 The DS phenotype is characterized by mild

to severe intellectual disability and several co-occurring medical con-

ditions, including congenital heart defects, gastrointestinal problems,

immune disorders, hypothyroidism, sleep apnea, and vision and hear-

ing impairment.2 Strikingly, individuals with DS have a 90% lifetime

prevalence of Alzheimer’s disease (AD),3 such that trisomy 21 is now

seen as a genetic form of AD (DSAD) similar to autosomal dominant

AD (ADAD), which is caused by mutations in the amyloid beta (Aβ)
precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2)

genes. Thus, AD has been identified as the key limitation to improving

the lifespan for people with DS.3 Efforts to identify interventions that

can delay or prevent AD are therefore of critical importance to the DS

community.

In DS, the hallmark pathological features of AD emerge earlier in

the lifespan relative to sporadic late-onset AD (LOAD) in the neu-

rotypical population, with Aβ plaques typically present in the 30s.4–7

The early onset of AD pathology in DS is driven by the triplication

of the APP gene located on chr21, which increases production of the

Aβ peptide.8 Amyloid positivity is followed by intracellular neurofib-

rillary tangles9, 10 and finally by neurodegeneration, as evidenced by

altered brain glucosemetabolism, atrophy, and biomarkers of neuronal

injury.11, 12 Similar toADADand LOAD, there is a long preclinical phase

in DSAD, with clinical AD symptoms evident about 20 years following

initial Aβ accumulation.9, 13

In recent years, the National Institutes of Health (NIH) has devoted

more than $125 million in research funding to establish biomark-

ers of DSAD and launch trial-ready DSAD studies (https://www.nih.

gov/include-project). Similar research efforts are being coordinated

and funded across the globe. These efforts have led to large cohort

studies (see Table 1), including the Alzheimer Biomarkers Consortium

of Down syndrome (ABC-DS), Trial Ready Cohort–Down Syndrome

(TRC-DS), London Down Syndrome Consortium (LonDownS), Euro-

pean Horizon 21 Consortium, and the Down Alzheimer Barcelona

Neuroimaging Initiative (DABNI). Research from these cohort studies

is quickly advancing science on the progression and timing of DSAD,

information that is essential for designing AD clinical trials. Many AD

clinical trials in the pipeline will directly target AD pathology (e.g.,

anti-amyloid drugs). As with LOAD and ADAD, there are also efforts

to identify protective lifestyle and biological factors that could be

targeted in clinical trials as a means of delaying and/or preventing

DSAD.

Toward this latter goal, in 2023, two Professional Interest Area

(PIA) groups of the Alzheimer’s Association International Society

to Advance Alzheimer’s Research and Treatment (ISTAART)—the

Reserve, Resilience, and Protective Factors PIA and the Down Syn-

dromeandAlzheimer’sDiseasePIA—formedaworking group to assess

the current state of research on resistance and resilience to DSAD,

the concepts of which are explained below. This working group con-

sisted of researchers and clinicianswith expertise related to resistance

and resilience to AD in LOAD and ADAD, as well as experts in DSAD.

The present article outlines the five aims proposed by this working

group: (1) Establish a framework for understanding resistance and

resilience to DSAD to guide future research; (2) review evidence on

within-population variability in the timing of DSAD pathology and

symptomology; (3) evaluate the genetic, biological, socio-behavioral,

lifestyle, and environmental factors with the most promise to promote

resistance and resilience to DSAD; (4) examine how health conditions
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that frequently co-occur with DS may affect resistance and resilience

to DSAD; and (5) identify key methodological considerations for stud-

ies on resilience and resistance to DSAD and establish a roadmap for

future research.

2 FRAMEWORK OF RESILIENCE AND
RESISTANCE TO DSAD

In 2019, a collaborative group of experts developed a framework to

understand individual differences in cognitive aging and AD in the

general population. This group, referred to as the “Collaboratory for

ResearchDefinitions on Reserve and Resilience in Cognitive Aging and

Dementia” defined the term resilience as an umbrella term that encom-

passes any concept related to the capacity of the brain to maintain

cognitive function with aging and disease.14 The group also provided

consensus definitions for specific mechanisms hypothesized to under-

lie resilience, including brain reserve, brain maintenance, and cognitive

reserve. More broadly, in AD research to date, two conceptually differ-

ent mechanisms have been distinguished: resistance to AD pathology

and resilience to the effects of AD pathology.15 This distinction allows

researchers to distinguish between factors that may help halt or slow

the development or progression of AD pathological processes (e.g., Aβ
and tau) (“resistance”) versus factors that delayor slowprocesses down-

stream of Aβ and tau burden and ultimately reduce or delay the clinical

expression of AD (“resilience”).15 Resistance refers to the idea that some

individuals have no or lower-than-expected AD pathology despite ele-

vated risk for AD, such as being a carrier of the apolipoprotein E

(APOE) ε4 allele.15 Resilience has been operationalized as cognitive

or functional performance that is better than expected at a given

level of pathology,15 that is, the attenuation of the presence of AD

pathology on cognitive performance. Within this framework, resilience

mechanisms may include (1) having greater neurobiological capital

prior to the development of AD-related pathology (brain reserve); (2)

greater ability to maintain brain structure and function over time in

the presence of AD-related pathology (brain maintenance); or (3) bet-

ter adaptation of cognitive strategies that compensate for AD-related

changes (cognitive reserve). Thus, resilience is not viewed as operating

through a single mechanism; nor is it viewed as only a response to age-

related changes or AD-related pathology, as it can reflect individual

differences in brain structure and function modified over the lifespan

(e.g., through education, occupation).16

These definitions of resistance and resilience can be applied to DSAD

with some modifications (Figure 1). In DSAD, the triplication of APP

can be seen as conferring genetic risk for AD by driving Aβ accu-

mulation, with other genes on chr21 compounding effects through

altering energy metabolism, inflammation, oxidative stress, and auto-

nomic functioning.4, 13 Evidence of resistance in DSAD should thus

be broadened beyond the absence of AD pathology and also include

reduced levels of AD pathology relative to other individuals with DS

of similar age (given that individuals with DS are already at risk for

AD due to trisomy 21). In contrast to LOAD, the genetic mechanisms

drivingDSADconfer greater predictability that individualswithDSwill

RESEARCH INCONTEXT

1. Systematic review: We applied research frameworks

from cognitive aging and Alzheimer’s disease (AD)

to develop operational definitions of resistance and

resilience in genetic form of AD (DSAD), and we identi-

fied factors that may alter the timing of AD pathology or

onset of dementia in DSAD based on existing theoretical

and empirical evidence.

2. Interpretation: Given that in Down syndrome (DS) devel-

opment of AD pathology is virtually universal, resistance

to DSAD can be considered the absence or reduced lev-

els of AD pathology relative to similar-aged adults with

DS. Resilience toDSADcanbe considered as better-than-

expected cognitive performance at a given level of AD

pathology relative to adults with DS of a similar age and

premorbid intellectual disability level.

3. Future directions: Longitudinal studies and experimental

designs using methods specialized for the DS population

are needed to identify factors contributing to resistance

and resilience in DSAD. Specific mechanisms that lead

to resistance and resilience may be identified using life-

course approaches, which will also enable the detection

of critical periods in which these mechanisms are embed-

ded.

develop AD pathology, and the early age of onset reduces systemic

aging-related confounds; these differences may benefit the study of

resilience factors, allowing better identification of keymarkers inDSAD

compared to LOAD. However, given the varying lifelong levels of intel-

lectual functioning among individuals with DS, resilience in DSAD can

be operationalized as better-than-expected cognitive performance at

a given level of AD pathology relative to other individuals with DS of

similar age and premorbid intellectual disability level.

3 VARIABILITY IN THE TIMING OF PATHOLOGY
AND SYMPTOMOLOGY IN DSAD

A prerequisite to the concept of resistance and resilience in DSAD is

the presence of individual variability, specifically, evidence that the age

at onset of AD pathology or rate of accumulation (resistance) and/or

the age at onset of AD-related cognitive impairment (resilience) varies

within the DS population. In vivo, the pathological processes associ-

ated with AD can be measured by biomarkers of aggregated Aβ, such
as positron emission tomography (PET) Aβ-PET or cerebrospinal fluid

(CSF) Aβ42/Aβ40 protein ratios, and biomarkers of neurofibrillary tan-

gles, such as tau-PET and plasma tau.15 PET imaging in the ABC-DS

study demonstrates that abnormal Aβ accumulation becomes evident
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TABLE 1 Currently available datasets for investigating resilience and resistance to DSAD.

Study N Neuropsychology Clinical Neuropathology PET MRI CSF Genetics Blood EEG

Lifestyle,

socio-behavioral,

environmental

ABC-DS 550 X X X X X X X X

DS-BAI 120 X X X X X

DABNI 1200 X X X X X X X X X

DSBC 304 X X X

Horizon-21b 1335 X X X X X

IDS-TILDA 753 X X X

LonDownS 350 X X X X X

NACC 500 X X X X X X X X

Vitamin E Triala 337 X X

Health

system-linked

biobanks (e.g.,

PMBB, UKB,

BioVU)

>1000 X X X X X X X X

Abbreviations: ABC-DS, Alzheimer Biomarkers Consortium—Down Syndrome (www.nia.nih.gov/research/abc-ds); BioVU, Vanderbilt University Med-

ical Center Biobank (https://victr.vumc.org/what-is-biovu/); CSF, cerebrospinal fluid; DABNI, Down Alzheimer Barcelona Neuroimaging Initiative

(https://santpaumemoryunit.com/alzheimer-down-unit/dabni-down-alzheimer-barcelona-neuroimaging-initiative/); DS-BAI, Down Syndrome—

Basque Alzheimer Initiative (https://doi.org/10.3390/jcm13041139); DSBC, Down Syndrome Biobank Consortium (https://medschool.cuanschutz.edu/

neurosurgery/research-and-innovation/services/down-syndrome-biobank); IDS-TILDA, Intellectual Disability Supplement to the Irish Longitudinal Study

on Aging (https://idstilda.tcd.ie/); LonDownS, London Down Syndrome Consortium (www.ucl.ac.uk/london-down-syndrome-consortium); MRI, magnetic

resonance imaging; PET, positron emission tomography; NACC, National Alzheimer’s Coordinating Center (https://naccdata.org); PET, Positron Emission

Tomography; PMBB, Penn Medicine Biobank (https://pmbb.med.upenn.edu/data-access/index.php); UKB: UK Biobank (https://www.ukbiobank.ac.uk/);

Vitamin E Trial: (https://doi.org/10.1212/wnl.0000000000002714).
aDenotes randomized controlled trial, whereas all other studies are observational studies. Reported Ns are approximate.
bHorizon-21 (https://horizon-21.org/) includes participants from England (LonDownS and the Cambridge Dementia in Down’s Syndrome [DiDS] cohorts),

Germany (AD21 study group, Munich), France (TriAL21 for Lejeune Institute, Paris), Spain (DABNI), and the Netherlands (the Rotterdam Down syndrome

study).

at ≈35 years of age and that abnormal tau deposition can be detected

when individuals are in their 40s and 50s.9, 17, 18

There is, however, individual variability around the age of Aβ
biomarker positivity (i.e., a threshold level suggestive of marked and

broad accumulation). In a cross-sectional study of 150 asymptomatic

adults with DS in DABNI, CSF Aβ and phosphorylated tau-181 (p-

tau181) negativitywas still present for individuals in theoldest quartile

(up to the age of 46.3 years).19 Similarly, in an ABC-DS study, the mean

age at onset of Aβ positivity on PET imaging was 46.4 years, with the

youngest age of 33 years.20 Studies of longitudinal change in tau in

individuals with DS are scarce. A study including 177 adults with DS

from the ABC-DS cohort reported that tau-PET increased at the same

rate across individuals following Aβ positivity onset,9 suggesting that

variability in the timing of tau burden depends on previously estab-

lished Aβ deposition. Of interest, this differs from what is observed in

LOAD,where there is both a longer duration and greater heterogeneity

in the association between the duration of Aβ positivity and elevated

tau burden.

There is also evidence of variability in the timing of AD symptomol-

ogy in DSAD. In a large meta-analysis of published studies between

1968 and 2019 (n= 2695), the estimated age at DSAD dementia onset

was53.8years,with a95%confidence interval (CI) of 53.1–54.5years.3

This estimated age at DSAD symptomonset was comparable to ADAD,

preceding the average age at onset of symptoms in LOAD by 20 years.

Therewas, however, substantial variability in the age at onset of DSAD

dementia diagnosis, ranging from 35 to 74 years, with a marked subset

of adults with DS over the age of 60 years remaining cognitively stable.

Evidence from neuropathological studies also shows variability in

the level of AD-related cognitive impairment based on age relative

to the level of AD neuropathologic change among individuals with

DS. In the general population, evidence for resilience includes post-

mortem studies of individuals with significant AD neuropathologic

change who did not exhibit cognitive impairment or exhibited less-

than-expected cognitive impairment prior to death.21 The Alzheimer’s

Disease Research Center at the University of California, Irvine (ADRC-

UCI), the DABNI cohort, and ABC-DS have a unique collection of

postmortem brain tissue from individuals with DS, which allows for

this same evidence to be examined in individuals with DS. Among brain

donors between 51 and 70 years of age at death with available clin-

ical and neuropathological data, 13% of cases were non-demented

at their last clinical evaluation, despite intermediate or high AD neu-

ropathologic change. This suggests that these individuals withDSwere
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F IGURE 1 Resilience and resistance framework for DSAD. AD, Alzheimer’s disease; APP, precursor protein; DS, Down syndrome.

resilient to the effects of AD neuropathology on cognition (Flores

Aguilar, unpublished data).

In summary, research to date demonstrates considerable variability

in the age at onset of Aβ positivity in individuals with DS, with some

showing lower levels of Aβ than expected given their age, a form of

resistance to Aβ accumulation in DSAD. Evidence is less clear regard-

ing resistance to tau, given that tau biomarker discovery is still in the

early stage, and thus, there are fewer published studies on tau inDSAD.

Findings to date suggest that the timing of tau accumulation follow-

ing Aβ positivity is shorter andmore homogeneous in DSAD relative to

LOAD, but there may still be opportunities for resistance mechanisms

to alter tau burden. There is also evidence for resilience inDSAD, given

considerable variability in the timing of AD symptomology and age at

dementia onset among individuals with similar levels of AD pathology.

Postmortem studies also suggest that a subset of adults with DS with

significant AD neuropathology did not develop clinical dementia.

4 GENETIC AND BIOLOGICAL FACTORS IN
RESISTANCE AND RESILIENCE IN DSAD

4.1 Genetic factors

Several genetic factors are hypothesized to promote resistance and

resilience to DSAD. Understanding their impact on the timing of

DSAD can offer meaningful insight into underlying biological mecha-

nisms that could be targeted in pharmaceutical interventions to build

resistance or resilience to DSAD.

4.1.1 APP gene

Triplication of the APP gene has been posited to be both necessary and

sufficient for causing DSAD. This is corroborated by the observation

of early-onset AD in individuals without DS who have small internal

duplications of chr21, leading to three copies of theAPP gene (referred

to as Dup-APP).22 Conversely, individuals with DS with partial trisomy

of chr21 that did not include an extra copy of the APP gene had little

evidence of AD pathology and symptomology into their 70s.23 Thus,

efforts to reduce the production of APP have the potential to provide

resistance to DSAD. However, there is evidence that APP may not be

the sole factor triggering AD pathogenesis in DSAD.24

4.1.2 Mosaicism of chr21

Mosaicism occurs when somatic cells share different dosages of chr21

and accounts for 2%–4% of individuals with DS.25 Lacking the full

dosage of overexpressed genes on chr21 may reduce risk for devel-

oping AD pathology,26 indeed, in two large DS cohorts (n = 357 and

n = 468), lower plasma Aβ40 and Aβ42 concentrations were observed

in adults with DS with mosaicism (vs full trisomy).27 Moreover, in the

older of these two cohorts, the total and annual decline in cognitive

performance was smaller, and the incidence and prevalence of demen-

tiawere lower among adultswithDSwithmosaicism (vs full trisomy).27

Similarly, in the ADRC-UCI neuropathology cohort, there were three

cases with mosaic DS. Among the mosaic DS cases (two female and

one male, 48–55 years of age), one had dementia, one had mild cogni-

tive impairment (MCI), and one was cognitively stable. Regarding tau

pathology, the non-demented case was categorized as Braak stage III,

whereas DS cases of similar age tended to be Braak stage V or VI and

demented. The DS case with dementia had tangle pathology consis-

tent with Braak stage VI. Future studies should investigate if cells in

the brain displaymosaicism similar to that of other somatic cells, as this

may alter the resistance effects of mosaicism.

Mosaicism can also be acquired over time.28 There is also recent

epidemiological evidence to suggest that mosaicism may not be pro-

tective in DS.29 A case report of a person with trisomy 21 mosaicism

showed early-onset clinical dementia and significant AD neuropathol-

ogy postmortem.30 Thus, AD neuropathology may be variable across
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the lifespan depending on the level of mosaicism.28 This is clearly an

area of research that will benefit from further examination.

4.1.3 Other chr21 genes

Other genes located on chr21 likely influence the progression ofDSAD

andmay confer resistance or resilience. The region 21q22.11-21q22.2

in the distal segment of the long arm of chr21 is described as the “DS

critical region” due to its strong association with the DS phenotype,

although theAPP gene is not located in this region, andmultiple regions

may be relevant.31 Still, some genes within the DS critical region are

linked to DSAD, such as SOD1, DYRK1A, RUNX1, and ABCG1.31, 32 In

addition, a genome-wide association study reported that the single

nucleotide polymorphism (SNP) rs9808800 in the DS cell adhesion

molecule (DSCAM) gene is associated with an earlier age-at-onset of

AD dementia,33 suggesting a role for this gene in the clinical expres-

sion of DSAD. The DSCAM gene is also located in the DS critical region

and is essential for neuronal wiring and motor learning. Moreover,

variants found in the β-secretase 2 (BACE2) gene (encoded in chr21),

such as rs2252576, rs2837990, and rs7281733, are associatedwith an

earlier age at onset of dementia in adultswithDS. In contrast, theoppo-

site was seen with the variants rs7510366 and rs6517664.34, 35 These

results suggest that variants in BACE2may enhance a pathogenic role

or mitigate a protective role of this protein.

4.1.4 Non chr21 genes

Genetic variants in non-chr21 genes are also implicated in modifying

the age at onset of DSAD, such as SNPs in phosphatidylinositol-

binding clathrin assembly protein (PICALM) and variants in sortilin-

related receptor 1 (SORL1).36, 37 Themissense variant rs605059 in the

HSD17B1 gene and the rs598126 variant in the COASY (2.2 (1.1, 4.4)

gene on chr17 are associatedwith an earlier age at onset of ADdemen-

tia amongwomenwithDS.38 These twovariantsmayalsobeassociated

with an earlier age at onset of AD in women without DS.33 Further

research is needed to determine if these genes could serve as good

targets for drug or therapeutic development to enhance resilience to

DSAD.

4.1.5 ApoE e4

The APOE ε4 allele is a risk factor for AD within and outside DS.

Current evidence suggests that APOE ε4 shifts the age at which AD

pathology begins to accumulate in a dose-dependent manner, with ε4
homozygous individuals having the youngest age at onset of amyloid

accumulation and positivity, followed by ε4 heterozygous individuals

and then ε4 noncarriers.39 In the general population, nearly all indi-

viduals who are APOE ε4 homozygotes have elevated CSF Aβ in their

60s, and their lifetime risk for clinical AD is 60%–80%.39 There ismixed

evidence on whether APOE ε4 influences DSAD. In 464 adults with

DS from the Cambridge Dementia in Down’s Syndrome (DiDS) cohort

and DABNI, adults with DS who were APOE ε4 carriers had a lower

CSF ratio of Aβ1-42/Aβ1-40 in young adulthood, earlier increases in

amyloid PET and plasma p-tau181 levels, earlier reductions in corti-

cal metabolism and hippocampal volume, and earlier memory decline

than non-carriers.40 Overall, adults with DS who were APOE ε4 car-

riers had an average age at AD dementia onset of 2 years (age 51)

younger than thosewhowere notAPOE ε4 carriers (age 53),40 a finding
also observed across various cohorts from the Horizon 21 European

DS consortium.41 In contrast, APOE ε4 effects were not observed in

the ABC-DS cohort in regard to timing of amyloid42 or tau.10 More

research is thus needed on APOE ε4 effects in DSAD and biologi-

cal mechanisms driving any resistance or resilience effects. Evidence

from an autopsy study of DS cases suggested that ApoE proteolysis

generates an amino-terminal fragment that accumulates within neu-

rofibrillary tangles.43 Therapeutic interventions that reduce or remove

these fragments may foster resistance to DSAD in APOE ε4 carriers.

4.2 Biological sex

The issue of biological sex differences in resilience and resistance to

DSAD has not yet been studied comprehensively, although there are

initial mixed findings.23, 44, 45 Some studies report no sex difference

in timing or prevalence of DSAD,44 whereas others report increased

risk in women at younger ages23 but greater risk of AD dementia in

men after age 60.45 Several factors may explain sex-specific resilience,

including the contribution of hormones. Women with DS experience

menopause 5–7 years earlier than the general population, and earlier

age at menopause is associated with earlier onset of AD dementia in

DS.46 In a study of 275 adults with DS, cognitively impaired women

with DS (both MCI and AD dementia groups) showed elevated plasma

total tau comparedwith cognitively stablewomenwithDS, but this dif-

ference was not apparent among men, highlighting that women may

bear greater loads of pathology despite having similar clinical presen-

tation to men.47 It has also been reported that women with DS who

were APOE ε4 carriers were diagnosed 3 years earlier than non-carrier
women, whereas this difference was not seen in men.48 Further work

is needed to investigate biological sex as a factor in resistance and

resilience, and continued reporting of sex disaggregated data will shed

more light on this issue in DSAD.

4.3 Neuromodulatory system

Neuromodulators are a subclass of neurotransmitters that are

released by neurons in subcortical nuclei diffusely and can affectmulti-

ple cell types and brain regions. Neuromodulators modulate neuronal

responses to other neurotransmitters, for example, by influencing the

activity of the autonomic nervous system, which may play a key role

in resilience to DSAD. Here we review evidence suggesting important

roles of the noradrenergic and cholinergic systems, particularly in

resistance and resilience in DSAD.
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4.3.1 Noradrenergic system

The locus coeruleus, the primary noradrenergic nucleus of the

brain, has an important role in memory formation and arousal, and

greater structural integrity and novelty-related activation of the

locus coeruleus may be protective against the downstream effects

of AD pathology on cognition.49 This finding suggests that the locus

coeruleus is important for resilience, and while the relevance of locus

coeruleus structural and functional alterations on cognition in indi-

viduals with DS has not yet been established, reduced serum levels

of 3-Methoxy-4-hydroxyphenylglycol (MPHG), a noradrenergic com-

pound, have been reported in adults with DSAD versus non-demented

adults with DS and adults without DS.50

4.3.2 Cholinergic system

The cortical cholinergic system, critical for learning, memory, and

attention,51 is affected in AD and DS. Observed deficits in choliner-

gic function have been associated with the progressive degeneration

of basal forebrain cholinergic neurons, the primary cholinergic output

of the central nervous system.52 In DS, degeneration of the nucleus

basalis of Meynert neurons (located in the basal forebrain) begins in

early adulthood, preceding overt AD symptoms,52 and corresponds

to the timing of early AD biomarker changes.53 The relevance of

interventions in the cholinergic system in DSAD has been studied

using the Ts65Dn mouse model of DSAD, where maternal dietary

choline supplementation reduced the degeneration of basal forebrain

cholinergic neurons and improved spatial memory function in the

offspring.54 In human adults with DSAD, targeting the cholinergic sys-

tem with cholinesterase inhibitor treatment has improved cognitive

endpoints.55 In addition, novel cholinergic therapies, such as posi-

tive allosteric modulators of cholinergic receptors, are under active

investigation.56 These findings highlight that cholinergic therapies and

nutritional supplementation may promote a more resilient cholinergic

system, potentially sparing cognitive function and protecting against

AD pathology in individuals with DS later in life.

4.4 Summary

Todate, the fieldhas identifiedevidence implicating several genetic and

biological factors in resistance and resilience to DSAD. The partial tri-

somy and mosaicism of chr21 are associated with less-than-expected

AD pathology (although there are some variable associations with pro-

tection) and may confer resistance to DSAD. Although it might be

debated whether an individual with reduced production of Aβ pathol-
ogy from birth due to differences in their genetic makeup (i.e., partial

trisomy and mosaicism) is truly resistant, our broad definition of resis-

tance in DSAD considers this so. Aside from APP, other chr21 genes

may attenuate resistance and resilience, given associations with ear-

lier age at onset of AD in DS. APOE ε4 is also associated with earlier

age at onset AD dementia in DS, but further research is needed to

gain a clearer picture of the relevance of other non-Chr21 genes.

Future research on transcriptomic and proteomic factors will help our

understanding of their relevance to resistance and resilience in DSAD.

Resilience may differ across the biological sexes, but given the mixed

findings to date, sex-stratified analyses are needed to further ascertain

the role of sex-specific factors. Although the noradrenergic neuromod-

ulatory system has a role in resilience to AD, its role in resilience to

DSADhasnot yet been studied. Thebeneficial effects of cholinesterase

inhibitors on cognition in DSAD suggest that the cholinergic system

could promote resilience to DSAD.

5 SOCIO-BEHAVIORAL, LIFESTYLE, AND
ENVIRONMENTAL FACTORS IN RESISTANCE AND
RESILIENCE TO DSAD

Socio-behavioral and environmental factors have also been posited

to be associated with resistance and, most frequently, resilience to

DSAD, as documented in the broader AD literature. The most promis-

ing factors from research to date are education and occupation, leisure

activities, and physical activity. Research on these factors has stemmed

mainly from cross-sectional or observational studies and often focused

on resilience in terms of better-than-expected cognitive performance

for age.

5.1 Premorbid intellectual disability level

TheDS population displays a considerable range in intelligent quotient

(IQ), with about 75%havingmild ormoderate intellectual disability and

15%–25%with severe to profound intellectual disability.57 It is posited

that a higher IQ confers greater ability to recruit alternate neural net-

works or use existing networks more efficiently to cope with early

AD-related pathology. In DS, variability in IQ is influenced by the type

of trisomy.58 However, similar age trajectories in the accumulation of

PET Aβ and tau in the onset, and rate, of cognitive decline among indi-

viduals with DS with varying levels of premorbid intellectual disability

have been reported.59 Similarly, no differences in the average age of

individuals with a clinical status of MCI or AD dementia were found

across individuals with mild, moderate, or severe/profound intellec-

tual disability.59 Thus, research to date does not suggest that the level

of intellectual disability in and of itself serves as a resilience or resis-

tancemechanism for DSAD. However, it is important to note that floor

effects often occur on standardized IQ tests with individuals with DS,

which can make it difficult to capture differences in IQ among people

with IQs<40.

5.2 Employment and education

The potential contributions of education and occupational complex-

ity (i.e., the extent to which one’s job requires problem solving, critical

thinking, and perspective taking) have been studied in DSAD. In one
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cross-sectional study of 56 adults with DS ages 25–58 years (and

thus already accumulating Aβ plaques), those engaged in more (vs

less) complex employment had less cognitive decline across 16–20

months when controlling for age, intellectual disability level, and hours

spent in employment.60 Another previous study of 35 adults with DS,

ages 29–67 years, reported that higher education and employment

levels (on a scale of no employment to full-time employment in the

community) were associated with better cognitive functioning.61 A

promising development is that in many countries across the globe,

adults with DS are increasingly engaging in employment,62 and there

are now college programs geared toward adults with intellectual dis-

ability (see https://downsyndrome.ie/higher-education/). This positive

trend should be continued and further expanded, given that partici-

pation in education and employment may be a vital way to promote

resilience in DSAD.

5.3 Leisure activities

Fewer studies have examined the role of cognitive and social leisure

activity engagement in DSAD. In a study of 65 adults with DS (ages

30–53 years), the level of engagement in leisure activities at baseline

was not related to baseline Aβ-PET burden or rate of change in Aβ-
PET levels over 3 years,63 suggesting that leisure activity engagement

does not provide resistance to Aβ accumulation. However, social activ-

ity engagement moderated the association between change in Aβ-PET
and decline in episodic memory performance across the 3-year study

period, indicating a potential resilience effect of leisure in DSAD.

5.4 Physical activity

Adults with DS engage in less physical activity than the general

population,64 likely due in part to a combination of hypotonia, low

muscle strength, impaired autonomic functioning, and higher levels of

obesity.65 Nevertheless, in adults with DS, the time spent in moderate

to vigorous physical activity has been positively associated with cogni-

tive performance when controlling for age and premorbid intellectual

disability level.66 Similarly, in a study that followed 214 participants

for 12 months, engagement in greater moderate to vigorous physical

activity at baselinewas associatedwith a62%reduced risk of decline in

memory at 12 months,67 indicating that physical activity may support

resilience. However, physical activity has not been linked directly to

resistance, as null associations have been reported with hippocampal

volume68 or longitudinal accumulation of Aβ-PET.63

The mechanisms through which physical activity confers resistance

or resilience to DSAD are unclear. Higher physical activity in adults

with DS has been associated with reduced risk of obstructive sleep

apnea, endocrine/metabolic conditions, and cardiovascular disease.69

Thus, physical activity may reduce the risk of DSAD by lowering the

riskof co-occurringhealth conditions.Greater physical activity has also

been associated with better white matter microstructural integrity in

adults with DS,66 whichmay thereby contribute to brain reserve.

5.5 Stressors, discrimination, and stigma

The impact of discrimination and stigma on resistance and resilience

to DSAD requires consideration. Compared to the general popula-

tion, individuals with DS face ongoing challenges in equitable access

to health care and social care services.70 Individuals with disabilities

are also at higher risk of maltreatment and victimization than individ-

uals without disabilities.71 Such experiences, in addition to challenges

in accessing services, may negatively affect physical and mental health

and increase the levels of stress experienced by individuals withDSAD,

which may attenuate resistance and resilience to AD. Biologically,

chronic stress can drive systemic inflammation and vascular disease,72

two pathways involved in AD pathogenesis.73 Outside of DS, depres-

sion and social isolation have been identified as modifiable risk factors

for AD.74 The shift away from institutionalized care over the past few

decades toward greater social integration may contribute to better

health outcomes for adults with DS above and beyond improvements

in health care.3

Outside of DS, inequities in the social and structural determinants

of health have been noted to give rise to racial disparities in AD

dementia.75 In the United States, a higher risk of MCI and dementia

has been reported in Hispanic and Black adults compared to White

adults,76 and more rapid cognitive decline has been observed in

older adults who were born in states with higher levels of structural

and socioeconomic racism,77 suggesting that racial and ethnic dis-

parities influence resilience. These disparities may be even more

pronouncedwithin the DS population.78 Approximately 80% of people

with disabilities reside in low- and middle-income countries.79 In

high-income countries, differences in wealth trajectories between

parents with and without children with DS have been documented.80

Adverse outcomes in DS have broadly been linked to lower socioe-

conomic conditions.81 However, there is a lack of data regarding how

reducing these disparities may improve resistance or resilience in

DSAD.

5.6 Summary

Overall, cognitively stimulating activities related to education, employ-

ment activities, and leisure activities appear to have promise for

increasing resilience to DSAD, albeit evidence to date is based pri-

marily on cross-sectional findings of better-than-expected cognitive

performance given an individual’s age as opposed to levels of AD

biomarkers. There is also evidence that physical activity provides

resilience as measured by better-than-expected cognitive perfor-

mance at a given age or as increases in cognitive performance following

intervention. Evidence to date suggests that the benefit of physical

activitymaynot bedirectly related toADpathophysiological processes

(i.e., resistance) but may alter other aspects of brain functioning (e.g.,

white matter impairment and reduced co-occurring health conditions)

in ways that allow individuals with DS to tolerate early AD pathology

for longer (i.e., resilience). Moving forward, it is important for the field

to examine how social and structural determinants of health, including
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societal views of race, ethnicity, socioeconomic status, and disability,

alter resistance and resilience to DSAD. Such efforts may also provide

insights for designing targeted interventions and policy changes

to improve access to medical care, educational and occupational

opportunities, leisure activities, and physical activities. Future work

could also consider how coping strategies, social support, and positive

life events could provide resilience by buffering against the negative

effects of stressors on biological processes that may contribute to

DSAD.

6 TARGETING CO-OCCURRING HEALTH
CONDITIONS TO BUILD RESISTANCE AND
RESILIENCE IN DSAD

Trisomy 21 is associated with a host of co-occurring health and neu-

robiological processes. Efforts to target these conditions and the

underlying biological processes may also offer meaningful pathways

for building resistance and resilience to DSAD.

6.1 Late-onset seizures

Late-onset seizures are noted in LOAD,ADAD, andDSAD,82 whichmay

be a result of the toxic accumulation of Aβ triggering synaptic degen-
eration, circuit remodeling, and abnormal synchronization of neuronal

networks.83 The prevalence of late-onset myoclonic epilepsy in DS

(LOMEDS), characterized by corticalmyoclonus and generalized tonic–

clonic seizures, has been reported to be as high as 56% to 80%.84 These

seizures could lead to additional neurologic insults and accelerate cog-

nitive decline.82 Therefore, the early identification and treatment of

LOMEDS may increase resilience by slowing the rate of symptomatic

decline.

6.2 Cardiometabolic disease and obesity

Trisomy 21 is associated with alterations in gene expression that

impact metabolism and metabolic health. For example, many of the

geneson chr21 (e.g., S100β, SOD1, PIGP) influencepathways involved in
inflammation,85 oxidative stress response,86 aswell as lipid and energy

metabolism.87 The downstream physiological effects of dysregulated

metabolism are thought to alter energy intake and expenditure inways

that lead to obesity and increase risk for other co-occurring condi-

tions such as obstructive sleep apnea and cardiometabolic disease.88

Metabolic dysfunction, obesity, and diabetes type 2 have also been

theorized to contribute to DSAD through effects on insulin resistance

and glucose dysregulation, oxidative stress, and vascular damage that

may increase Aβ plaques and hyperphosphorylated tau.89 However,

research investigating these effects is limited in DS and thus it is not

clear if efforts to improve metabolic health, including reducing obesity

and type 2 diabetes, build resistance to DSAD.

6.3 Immune dysfunction and inflammatory
processes

Neuroinflammation plays a role in AD pathogenesis and neurodegen-

eration, and individualswithDShave a uniquely elevated inflammatory

profile that persists across the lifespan. This profile manifests as

highly active andmorphologically distinct astrocytes andmicroglia and

increased levels of inflammatory cytokines,85 related to systemic and

central nervous system inflammation. Co-occurring health conditions

suchasperiodontitis90 canalso contribute to low-gradechronic inflam-

mation. Immune system dysregulation and neuroinflammation have

long been posited to play a role in AD pathogenesis and neurode-

generation outside of DS.91 Further research is needed to investigate

the possibility that prevention and treatment of autoimmune and

inflammatory processes might contribute to resistance to AD pathol-

ogy in DSAD. Similar to in LOAD, in adults with DS, plasma levels of

glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis,

differentiate between those with and without AD dementia, correlat-

ing strongly with Aβ pathology, neurodegeneration, and AD clinical

progression.92 Furthermore, the astrocyte-associated protein, S100β,
is also on chr21.

Although an exacerbated inflammatory response has been par-

tially attributed to the triplication of a range of immune-related genes

located on chr21,93 synergism between inflammatory processes and

the brain’s vasculature may contribute to the inflammatory profile in

DS.94 Magnetic resonance imaging (MRI) markers of cerebrovascular

disease are associated with proteomic patterns reflective of inflamma-

tion earlier in the disease and patterns reflective of neurodegeneration

later in the disease.95 Furthermore, cerebrovascular disease may pro-

mote tau pathology through astrocytic pathways in the preclinical

stages of DSAD,96 suggesting that neuroinflammation, and potentially

its biological interactionwith vascular pathology, could be ameaningful

target for building resistance to DSAD.

6.4 Cerebrovascular disease

Cerebrovascular disease is highly prevalent in adults with DS,97, 98

who showwhitematter hyperintensities, enlarged perivascular spaces,

and infarcts on MRI as early as in their 40s.99 Moreover, the pres-

ence of cerebrovascular pathology increases in line with the severity

of cognitive impairment inDSAD.99 Postmortemanalysesdemonstrate

significantly lower microvessel density in DS cases than in non-DS

cases.100 Although atherosclerosis and arteriolosclerosis are rare in

postmortem DS cases, cerebral amyloid angiopathy, that is, the depo-

sition of Aβ in small vessels, is observed more frequently in DS cases

compared to AD and control cases,101 which is unsurprising given

the overproduction of Aβ in DS. In DS, the severity of cerebral amy-

loid angiopathy is associated with microbleeds.102 The co-occurring

presence of cerebrovascular pathology in DSAD may thus deplete

resilience to AD pathology. Postmortem examinations of cognitively

unimpaired individualswithDS can provide some insight into the detri-
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mental effect of co-occurring cerebrovascular pathology on resilience

to AD. For instance, in the 90+ Study, a non-DS cohort, resilient

cases (cognitively unimpaired despite pathological diagnoses of AD)

showed significantly fewer non-AD pathologies at postmortem than

AD cases.21

6.5 Sensory impairments

Visual impairments, such as nystagmus, strabismus, keratoconus,

amblyopia, cataracts, and refractive errors, are common in adults with

DS,103 and retinal changes may underpin some of the visual impair-

ments in DS. However, it is not yet clear if visual impairments influence

DSAD pathology or accelerate decline. Outside of DS, vision impair-

ments have been associated with an increased risk of AD.104 Adults

with DS are also at risk for hearing impairments, including conduc-

tive, sensorineural, and mixed types.105 Central auditory processing

abnormalities in individuals with DS are reported, potentially in rela-

tion to the degeneration of the cholinergic system, indicating possible

AD neuropathological overlap.106 Hearing loss is considered a modifi-

able risk factor for dementia outside ofDS, and addressing hearing loss,

thereby maintaining access to environmental cognitive stimulation,

may promote resilience to DSAD.74

6.6 Disrupted sleep and obstructive sleep apnea

Sleep disruptions, common in individuals withDS,101 have been associ-

ated with higher PET Aβ and lower cognitive performance in 47 adults

with DS.107 Moreover, more disrupted sleep is observed in adults

with DS and MCI compared to cognitively stable adults with DS.107 In

another study of 116 adultswithDS (36%withMCI or AD), an obstruc-

tive sleep apnea diagnosis was associated with higher cortical PET Aβ
and greater white matter hyperintensity volume in the frontal and

temporal lobes.108 Impaired white matter microstructural integrity

has been identified as potentially driving the connection between

disrupted sleep and obstructive sleep apnea with DSAD. Given the

high prevalence of sleep disorders in the DS population, addressing

sleep disturbances and reducing obstructive sleep apnea may provide

avenues for building both resilience and resistance to DSAD.

6.7 Summary

As we have reviewed, people with DS can experience several co-

occurring health conditions and targeting these conditions may pro-

mote resistance and resilience to DSAD. Although late-onset seizures,

cardiometabolic disease, and obesity could theoretically affect both

resistance and resilience to DSAD, more research is needed to deter-

mine whether addressing these conditions will meaningfully promote

resistance and resilience. Immune dysfunction and neuroinflammation

and the interactionofneuroinflammationwith cerebrovascular disease

are likely important factors affecting resistance to DSAD and address-

ing cerebrovascular diseasemay improve resilience. Correction of sen-

sory impairments may promote resistance and resilience, but has not

yet been well-studied in DSAD. In contrast, findings from several stud-

ies have implicated sleep disruptions and sleep disorders in resistance

to DSAD. These is not an exhaustive list of co-occurring conditions,

but we have described some related to differential outcomes in DSAD

and mechanisms through which they might influence resistance and

resilience. Other co-occurring health conditions in DS should be stud-

ied further to understand their influence on resistance and resilience.

For example, musculoskeletal problems109 may affect engagement in

physical activity or activities requiring travel, or hypothyroidism110

may impair cerebral blood flow and glucosemetabolism.111 Continued

work addressing the role of co-occurring health conditions will help to

understand better the mechanisms through which they might affect

resistance and resilience to DSAD and may help to identify interven-

tions that address comorbidities while also promoting resistance and

resilience.

7 METHODOLOGICAL CONSIDERATIONS FOR
STUDYING RESISTANCE AND RESILIENCE IN DSAD

7.1 PET imaging

PET imaging has been applied to study biomarker changes and A/T/(N)

staging in DSAD and offers a framework for understanding resis-

tance and resilience to DSAD. In line with findings from LOAD, clinical

AD symptomatology was more closely associated with tau than Aβ,18

emphasizing the importance of tau-PET for studying resilience in

later stages of the DSAD continuum. Moreover, neuroinflammation

PET imaging may provide even earlier markers indicating pathologi-

cal change preceding changes in the other biomarkers.112 PET imaging

can also inform A/T/(N) staging in DS, a useful framework to explore

resilience and resistance at different stages of the AD continuum. For

instance, in a sample of 162 adults with an age range of 25 to 61 years

(38.84 ± 8.41), 69.8% were A–/T–/(N) –, 11.1% were A+/T–/(N) –,
5.6% were A+/T+/(N) –, and 9.3% were A+/T+/(N)+.18 PET imaging

concerning A/T/(N) staging in DSAD warrants more investigation, pri-

marily to better determine thresholds for this population. It may also

be an essential tool in AD clinical trials for DSAD, as it is for the general

population.

7.2 Structural imaging

Structural imaging studies have indicated that there is evidence of

divergent structural connectivity inDS individuals113 and, importantly,

have demonstrated lower total intracranial volume (TIV) in DS indi-

viduals compared to the general population.114 TIV has been used

as a proxy for brain reserve115 and is often used to account for

between-subject variability in total and regional brain volume related

to variation in head size. Thus, care is needed when assessing and

interpreting brain substrates for resilience and resistance in DS, espe-
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cially when using volumes adjusted for TIV and/or comparing results

to the general population. In this regard, surface metrics that do not

require TIV adjustment, microstructural properties derived from dif-

fusion imaging, and studies using longitudinal within-subject brain

changesmight be useful to overcome these issues.

Generally, as discussed, there are some challenges in the use of

these imaging modalities in DS, which may be further exacerbated due

to a higher likelihood of motion artifacts.116 However, implementing

population-specific approaches for data acquisition and processing117

and improved quality control of MRI data can help to mitigate these

issues. The structural specificities in DS can also affect the suitability

of some standard neuroimaging preprocessing pipelines, which have

been developed in adults without DS. Developing DS-specific stan-

dard anatomic templates118 and atlases might help uncover neural

substrates of resilience and resistance in DS.

7.3 Functional imaging in DS

Abnormal functional connectivity in the default mode network

(DMN)119 has been reported in DS (e.g., reduced strength of con-

nections to posterior cingulate and anterior cingulate) and has been

associated with the presence of AD neuropathology120 and with clin-

ical progression to AD dementia in the DS population.121 Together,

these findings suggest that intact functional connectivity of the DMN

may contribute to both resilience and resistance to AD in DS. Future

studies might obtain insights into functionally relevant substrates of

resilience in DSAD by investigating whether functional connectivity

of networks, such as the DMN or the frontoparietal control network,

modify the relationship between AD pathology and cognitive decline,

as reported in non-DS populations.122 Measuring functional activation

in adults with DS during episodic memory and executive tasks in the

context of AD biomarkers could also provide insights into functionally

relevant substrates of resilience in DSAD.

7.4 Currently available data

In Table 1, we have summarized publicly available datasets that include

robust data from existing DS cohort studies that could be leveraged to

shed new light on resilience and resistance to DSAD.

8 SUMMARY AND ROADMAP FOR STUDYING
RESISTANCE AND RESILIENCE IN DSAD

There have been significant advances in understanding the natural

history of DSAD. However, there are critical gaps in our current under-

standing of resilience and resistance factors in DSAD. Determining

factors that delay AD pathology (i.e., resistance) and/or protect against

downstream cognitive decline (i.e., resilience) in DSAD has important

clinical and research implications, including driving pharmaceutical,

lifestyle, or policy interventions to delay disease progression and/or

prolong functioning. Moreover, in DSAD clinical trials, efforts to take

into account resistance and resilience factors (e.g., presence of cer-

tain co-occurring health conditions) could improve the sensitivity to

treatment effects.123 Furthermore, the possibility of targeting biolog-

ical resistance and resilience factors, including the cholinergic system

or genetic factors, via novel therapeutics should be explored. Future

results from postmortem studies from well-characterized cohorts and

multimodal datasets, as identified in Table 1,will enrich and deepen our

knowledge of resilience and resistance to DSAD. Increased emphasis

on data sharing and collaborations will give researchers greater access

to large, robust datasets in the coming years.

Four themes emerge in thinking about advancing the understanding

of resistance and resilience to DSAD over the next 5 years. First, there

is a critical need for longitudinal studies and experimental designs

(e.g., clinical trials of physical activity interventions), as most evidence

for resistance and resilience to DSAD to date is based on cross-

sectional or observational studies. Second, the development of DS

population-specific tools for assessing lifestyle, socio-behavioral, and

environmental factors is needed to move the field forward, as many

of the tools developed for the general population (e.g., education level

or household income) may be irrelevant or less sensitive in assess-

ing the variables most salient for people with DS (e.g., social inclusion

and disability-related discrimination). Third, a promising avenue for

future research may be to profile “resistant” or “resilient” individuals

to understandbetter the factors thatmaydifferentiate them from their

peers. For example, such research could identify adults withDS in their

50s without elevated Aβ or those who are in their mid-60s without

AD dementia and leverage statistical approaches to determine what

genetic, biofluid, co-occurring neurological, or lifestyle factors (past

and present) distinguish these individuals from others. Fourth, there is

a need for life course approaches aimed at understanding howmecha-

nisms that foster resistance or resilience are built over time to protect

against DSAD. Indeed, life course approaches may be better suited for

capturing the gradual accumulation of brain and cognitive reserve that

stems from multiple resilience factors that build on one another over

time. Long-term longitudinal studies that observe individuals with DS

across childhood and into adulthood may also identify resistance and

resilience mechanisms that occur in early life (e.g., early life events or

medical interventions for early life conditions such as congenital heart

deficits), which are often ignored in aging research and can also help to

identify if there are critical periods for the development of resistance

and resilience in DSAD. Fifth, it is important for the field to continue

to refine its definitions of resistance and resilience as new discoveries

come to light. Specifically, the field will need to consider to what level

of deviation from themeanpattern signifies resistance (e.g., delay ofAβ
positivity by 3 or 10 years) and resilience (e.g., delay of ADdementia by

5 or 15 years), as this may differ from that of LOAD, in which there is

not the same strong genetic determinant. Further revisions of defini-

tions may also consider the need for conceptual separations between

modifiable and non-modifiable resistance and resilience factors.

In conclusion, the application of the framework of resistance

and resilience to DSAD as outlined here provides an opportu-

nity for researchers to further explore the genetic, biological,
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socio-behavioral, lifestyle, and environmental factors involved in

resistance and resilience. These future explorations, along with a

better understanding of the role of co-occurring health conditions in

DSAD and improvements in imaging and data availability provide a

clear path forward to improving our understanding of resistance and

resilience in DSAD and to ultimately translating this knowledge into

improved outcomes for people with DS.
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