
European Heart Journal - Digital Health (2025) 00, 1–8 
https://doi.org/10.1093/ehjdh/ztaf042

ORIGINAL ARTICLE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Liquid biopsy based on whole blood 
transcriptome and artificial intelligence  
for the prediction of coronary artery 
calcification: a pilot study
Rosana Poggio  1,*, Gaston A. Rodriguez-Granillo2, Florencia De Lillo  1, 
Alejandra Bibiana Rubilar  2, Sarah Y. Garron-Arias  2, Nelba Pérez  3, 
Razan Hijazi  1, Claudia Solari  1, María Olivera-Mores  1,  
Soledad Rodriguez-Varela1,3, Alan Möbbs  1, Estefanía Mancini  1, 
Ignacio Berdiñas  1, Alejandro La Greca  1,3, Carlos Luzzani  1,  
and Santiago Miriuka  1,3

1MultiplAI Health, 184 Cambridge Science Park Rd, Milton, Cambridge CB4 0GA, United Kingdom; 2Instituto Médico ENERI, Clinica La Sagrada Familia, Av. del Libertador 6647, Cdad, 
Autónoma de Buenos Aires, Argentina; and 3Department of Cardiovascular Imaging, LIAN, Instituto de Neurociencias (INEU), Fleni-CONICET, RN 9 Km 53, Loma Verde, Provincia de 
Buenos Aires, Argentina

Received 1 July 2024; revised 26 October 2024; accepted 25 March 2025; online publish-ahead-of-print 2 May 2025

Aims Whole blood RNA expression is modulated in response to signals from tissues, including the vessel wall. The primary ob-
jective of this study was to explore the ability of whole blood transcriptomes, analysed using artificial intelligence (AI), to 
predict coronary artery calcifications (CAC).

Methods 
and results

A total of 196 subjects [men aged 40–70 years and women aged 50–70 years without known cardiovascular disease (CVD)] 
were non-consecutively enrolled for CAC assessment via chest computed tomography. Whole blood RNA was isolated and 
sequenced. Different AI models were trained using clinical and transcriptomic variables as distinctive features to identify the 
presence of CAC (Agatston score >0). Finally, we compared the predictive performance of these models. The prevalence of 
CAC was 43.9%. The combined AI model, incorporating transcriptome data along with age, sex, body mass index, smoking 
status, diabetes, and hypercholesterolaemia, achieved an area under the curve (AUC) of 0.92 (95% CI, 0.88–0.95) for pre-
dicting the presence of CAC, with a sensitivity of 92%, specificity of 80%, positive predictive value of 81%, negative predictive 
value of 91%, and an overall accuracy of 86%. The combined AI model demonstrated significantly improved discrimination 
compared with the transcriptomic model (AUC 0.79; P = 0.009), the clinical variables model (AUC 0.72; P < 0.001), and the 
CVD risk model (AUC 0.68; P < 0.001).

Conclusion In this pilot study, an AI model integrating whole blood transcriptome data with clinical risk factors demonstrated the ability 
to predict CAC, providing incremental value over clinical models. Further studies are needed to achieve more robust 
validation.

* Corresponding author. Tel: +54 9 11 61952253, Email: rosana.poggio@multiplaihealth.com
© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Background
The concept of a liquid biopsy has gained momentum in recent years 
due to its potential to detect disease signals in the blood.1 This meth-
odology involves the analysis of various blood biomarkers, such as cell- 
free DNA (cfDNA), RNA, and proteins and has been explored for both 
disease screening and prognosis.2

Among the numerous molecules utilized in omics analyses, RNA stands 
out due to its central role in biological processes. As a dynamic copy of 
DNA, RNA expression responds to environmental influences according 
to inherited patterns. Deep RNA sequencing of peripheral blood may pro-
vide extensive insights into various diseases, particularly vascular diseases, as 
the interaction between blood and the arterial wall generates information 
that can be detected in the bloodstream. It has been established that altera-
tions in gene expression are associated with the presence of atheroscler-
osis, coronary artery disease, and stroke.3 Despite these advances, most 
developments in liquid biopsy have focused on cancer detection, with rela-
tively few studies conducted in CVD.4–6

Accordingly, this pilot clinical study aimed to explore the ability of the 
whole blood transcriptome, analysed using artificial intelligence (AI) algo-
rithms, to predict the presence of coronary artery calcification (CAC) as 
a proxy for coronary atherosclerosis in asymptomatic individuals without 
a prior history of CVD.

Methods
Study population
This study was reviewed and approved by the Institutional Review Ethics 
Board. An opportunistic sampling method was employed at a healthcare 

clinic in Argentina to recruit 200 non-consecutive patients (men aged 40– 
75 years and women aged 50–75 years) who were referred for chest CT 
evaluation (e.g. due to symptoms such as cough or a history of smoking) 
or individuals attending the clinic for other reasons who volunteered for 
coronary artery calcium (CAC) assessment using low-dose chest computed 
tomography. Eligible participants had no prior history of atherosclerotic 
cardiovascular disease (ASCVD) and provided informed consent to partici-
pate in the study.

Patients were systematically excluded if they had a documented history 
of chronic kidney or liver failure, exacerbated asthma or chronic obstructive 
pulmonary disease (COPD), pulmonary fibrosis, recent acute myocardial 
infarction, heart failure, prior coronary or other vascular interventions, un-
controlled hyper- or hypothyroidism, adrenal insufficiency, recent surgery 
within the last three months, significant trauma within the last 6 months 
(defined as involving bone fractures and/or surgical interventions), active 
or ongoing treatment for known oncological diseases, ongoing pregnancy, 
puerperium of <12 months postpartum, immunosuppressive treatment, 
or confirmed COVID-19 within the last 3 months.

Data collection
Participants who met the eligibility criteria were invited to take part in the 
study, and informed consent was obtained. Study data were collected using 
questionnaires specifically designed for this research. The collected data in-
cluded several parameters: age, sex, clinical history of diabetes, hyperten-
sion, smoking habits, and medications at the time of admission. 
Participants were classified as having hypercholesterolaemia if they had a to-
tal cholesterol level >240 mg/dL, LDL cholesterol (LDL-C) >160 mg/dL,7

or were documented as being on lipid-lowering medications in their medical 
records.

Trained and certified personnel collected body weight and height data 
following standardized procedures using an integrated scale and stadi-
ometer. Blood pressure was measured using a digital blood pressure 
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monitor (Omron, model HEM-7130). Participants were required to remain 
seated and at rest for 5 min before measurement. The consumption of tea, 
mate, or coffee, as well as smoking or physical activity, was not permitted 
within 30 min prior to testing. Three blood pressure measurements were 
taken at 1-min intervals, and the average of the three readings was used 
for analysis.8

Blood sample collection
Whole blood (3 mL) was collected via standard venepuncture from the arm 
into a Tempus tube and stored at −20°C until processing, following the 
manufacturer’s instructions. Each sample was labelled with a unique identi-
fier number.

Chest computed tomography scan
A low-dose, ungated chest CT scan was performed using a multidetector 
spectral tomography system (IQon Spectral CT, Philips Healthcare, The 
Netherlands) with the following parameters: collimation 64 × 0.625 mm, 
tube voltage 120 kV, current 70–140 mA based on patient size, rotation 
time 270 ms, and slice thickness 2.0 mm.

The presence and extent of CAC were assessed using both ordinal vari-
ables (number of segments with CAC and number of affected vessels) and 
continuous variables (Agatston score), employing dedicated software 
(HeartBeat-CS, Philips Healthcare, Best, The Netherlands). The threshold 
for CAC detection was defined as a CT attenuation value of 130 HU. A re-
gion of interest enclosing these areas was manually drawn, enabling a 
computer-driven measurement of the calcified lesion area based on the 
Agatston score. This score was obtained by multiplying each calcified 
area by a pre-established density factor and summing the individual lesion 
scores.

On a per-patient basis, the presence of CAC was defined as an Agatston 
score > 0. Ungated chest CT has demonstrated a high level of agreement 
with ECG-gated CAC scoring, offering similar prognostic value and reliable 
discrimination between CAC categories.9,10

RNA sequencing
Total RNA was extracted from the collected blood samples using Thermo 
Fisher’s RNA spin column kit (Thermo Fisher Scientific, Waltham, MA, 
USA) following the manufacturer’s protocol. Briefly, the frozen blood sam-
ples were thawed on ice, and RNA was isolated using a spin column-based 
purification method. The extracted RNA was eluted in nuclease-free water 
and quantified using the RNA Broad Range Qubit Assay (Thermo Fisher 
Scientific, Waltham, MA, USA). RNA quality was assessed using the RNA 
Integrity Number (eRIN), measured on an Agilent TapeStation 4150.

Library preparation was carried out using Illumina’s Stranded Total RNA 
with Ribo-Zero Plus kit (Illumina, San Diego, CA, USA) according to the 
manufacturer’s instructions. This kit enables the depletion of ribosomal 
and globin RNA while generating stranded RNA libraries. Briefly, 100 ng 
of RNA with an eRIN of 7 or higher was subjected to rRNA and globin de-
pletion using the kit, followed by fragmentation and complementary DNA 
(cDNA) synthesis. Adapters compatible with Illumina sequencing were then 
ligated to the resulting cDNA fragments, and PCR amplification was per-
formed for library indexing and enrichment. The final libraries were as-
sessed for quality and quantified using an Agilent TapeStation 4150 and 
Qubit dsDNA Broad Range assay, respectively.

The prepared libraries were sequenced on an Illumina NovaSeq 6000 
platform (Illumina, San Diego, CA, USA) using S4 flow cell chemistry. 
Twenty libraries were pooled together, ensuring an equal amount of 
DNA from each library, and loaded onto a single flow cell lane. 
Sequencing was performed using 150 bp paired-end reads, targeting a min-
imum depth of at least 100 million reads per sample. Base calling and quality 
scoring were conducted using Illumina Real-Time Analysis (RTA) software.

Bioinformatics and AI analyses
Raw sequencing reads delivered by the NGS provider were quality checked 
with FastQC software, and any adapter contamination was removed. 
Good-quality (>Q30) 150 bp-long paired-end reads were aligned to the 
reference human genome in two-pass mode against the GRCh38 genome 
using STAR with mostly standard parameters. Quantification of transcripts 

was performed using SALMON with the GRCh38 genome/transcriptome. 
Differential expression analysis was performed using R package edgeR; cod-
ing and non-coding genes were considered differentially expressed and re-
tained for further analysis when log2FC group2/group1 ≥ 1 and FDR < 0.1. 
The Python’s Seaborn library was used to generate the volcano plot.

After collecting and analysing bioinformatic data, four distinct AI models 
were developed using supervised learning techniques. Each model employs 
a unique approach, incorporating different variables for its predictions. The 
first model (CVD Risk model) incorporates the 10-year CVD risk, estimated 
using the World Health Organization (WHO) non laboratory based chart 
specifically developed for the Southern Latin American population.11 For 
the descriptive and analytical purposes of the current study, WHO risk cat-
egories were grouped as follows: low risk <10%, 10% to 19% (intermediate 
risk), and 20% or higher (high risk). The second model exclusively leverages 
clinical risk factors data (Clinical variables model) using body mass index 
(BMI), hypertension, current smoking status, age, sex, diabetes, and hyper-
cholesterolaemia (Table 1). The third model focuses exclusively on tran-
scriptomics variables (Transcriptomic model) using a comprehensive list of 
features, drawing on previous research findings to ensure our model’s rele-
vance and applicability to the analysis. Finally, the fourth model combines 
transcriptomics and risk factors data (Combined model).

To maximize the use of our limited dataset for both training and valid-
ation, while ensuring a stable metric for model comparison and hyperpara-
meter optimisation, a Leave-One-Out (LOO) cross-validation strategy was 
employed. This approach involves iteratively training the model on all but 
one sample and validating it on the held-out sample, repeating this process 
for each sample in the dataset.

LOO provides a nearly unbiased estimate of model performance, enab-
ling us to evaluate the stability of our models without reserving a large por-
tion of our data for a separate validation set. This approach is particularly 
beneficial when optimizing hyperparameters, such as the regularization 
coefficients in our models.

Furthermore, the consistent performance metric derived from LOO 
cross-validation serves as a valuable guide in our feature selection process. 
We employed an iterative feature removal approach to address the curse of 
dimensionality, particularly relevant in our high-dimensional transcriptomic 
data. By progressively eliminating less important features based on their im-
pact on the LOO performance metric, we aimed to reduce model com-
plexity while maintaining or improving predictive power.12

Additionally, a Features Importance Analysis (FIA) was conducted to 
identify the most relevant genes and clinical variables influencing the model’s 
prediction. FIA values were calculated to rank the features that had the 
greatest impact on the prediction of CAC.13

Model performance and comparisons
Model performance was assessed using traditional metrics, including sensi-
tivity, specificity, accuracy, and positive and negative predictive values. The 
area under the curve (AUC) was calculated from the receiver operating 
characteristic curve across different classification thresholds. The AUC 
was used to compare the prediction performances of different models 
for the presence of CAC. In order to evaluate the statistical significance be-
tween the different models (AUC), we implemented two different ap-
proaches. First, DeLong’s test compares the differences between paired 
AUC values and their standard errors to calculate a P-value.14,15 Second, 
a bootstrap hypothesis testing method, using 1000 bootstrap samples, 
which conducts pairwise comparisons among the models (e.g. clinical vs. 
transcriptomics, clinical vs. CVD risk) based on the derived z-scores and 
P-values (one sided P-value).

The optimal threshold, or inflection point, for defining sensitivity and spe-
cificity was determined using Youden’s J statistic.16 This statistical measure 
helps identify the threshold that optimizes the overall performance of a bin-
ary classification test by balancing sensitivity and specificity.

Net Reclassification Improvement (NRI) was calculated to evaluate the 
reclassification performance of the CVD risk equation compared to the 
combined AI model. Participants were categorized into three distinct risk 
groups: low, intermediate, and high risk.

For participants with CAC > 0 (Cases), upward reclassifications (a higher 
risk category with the AI model) were identified as correct. Similarly, for in-
dividuals with CAC = 0 (Non-cases), downward reclassifications (a lower 
risk category with the AI model) were considered correct.
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The NRI was calculated by comparing the reclassification of individuals 
between the two models using the R package. The NRI was calculated using 
the following code17:

nri cases = (cases up/total cases) − (cases down/total cases) 
nri non cases=(non casesdown/total noncases)−(noncasesup/total non cases) 

NRI=nri cases+nri non cases 

The Integrated Discrimination Index (IDI) was also calculated, to describe 
the improvement in a model’s ability to discriminate between cases 
(CAC > 0) and non-cases (CAC = 0) when a new predictor or model 
(Combined) is added to the previous one (CVD risk). Mean Probability 
for Cases (CAC > 0) was defined as: correctly_predicted_cases/total_cases 
and Mean Probability for Non-Cases (CAC = 0) as: correctly_predicted_ 
non_cases/total_non_cases. The following codes were used for the IDI 
calculation17:

idi cases=(meancasesnew−meancasesold) 
idi non cases=(meannoncases old−meannoncasesnew) 

IDI= idi cases+ idi non cases 

The calibration of the model was evaluated using the Hosmer–Lemeshow 
test. A non-significant P-value (P > 0.05) indicates adequate calibration, 
while a significant result (P ≤ 0.05) suggests a suboptimal calibration.

Results
A total of 196 patients were included in the final analysis after the ex-
clusion of four samples due to the low quality of the RNA sequencing. 
The comparative clinical characteristics between cases and controls are 
outlined in Table 1. Among them, 96 patients (49%) had coronary cal-
cium (CAC > 0) and were defined as cases, 59.4% in men and 40.6% in 
women (P=0.072). Statin treatment was present in 23.0% of the study 

population, with 31.3% of those with CAC >0 and 15.0% of those with 
CAC = 0 receiving statin therapy (P = 0.01).

The mean age of cases was higher (61 vs. 55 years; P < 0.01), with a 
lower proportion of females (41% vs. 48%). Among the ASCVD risk 
factors, the prevalence of diabetes was 12% in both groups. 
However, cases had a higher prevalence of hypertension (47% vs. 
29%; P < 0.01), dyslipidaemia (36% vs. 23%; P < 0.01), and use of statins 
(31% vs. 15%; P < 0.01). Additionally, a higher percentage of cases were 
categorized as moderate risk (37.5% vs. 17%) and high risk (7.3% vs. 1%; 
P < 0.01) based on the WHO risk score.

The prevalence of a CAC score > 0 varied across different cardiovas-
cular disease (ASCVD) risk categories. It was found to be 32.8% for in-
dividuals classified as low risk, 68.2% for those categorized as 
intermediate risk, and 56.7% within the high risk category. Similarly, 
the prevalence of a CAC score equal to or higher than 100AU was 
9.6% for those at low/borderline risk, 34.1% for moderate risk, and 
52.9% for individuals in the high risk category (Figure 1).

Differential expression analysis for the 
presence of CAC
The differential expression analysis showed significant alterations in the 
expression levels of several long non-coding RNAs, including pseudo-
genes (see Supplementary material online, Table S1 and 
Supplementary material online, Figure S1). Significant upregulation of 
SLC8A2 (log2FC 5.397), CREB3L1 (log2FC 2.970), NPIPA9 (log2FC 
2.474), RAP1GAP (log2FC 1.496), APOL4 (log2FC 1.249), CD177 
(log2FC 1.122), and ARG2 (log2FC 0.959) was observed. By contrast, 
the mitochondrial-related genes MTND5P11 (log2FC −4.788), 
MTND4P12 (log2FC −3.897) and MTND4LP30 (log2FC −3.774) 
were downregulated in individuals with coronary calcifications.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 General characteristics of the study population

Total 
(n 196)

CAC 0 
(n 100)

CAC >0 
(n 96)

P-value

Age, mean y (SD) 55.2 (8.1) 60.9 (7.9) <0.01
40–49 y,% 15.3 21.0 9.4 0.04

50–59 y, % 42.9 52.0 33.3 0.01

≥60 y, % 41.8 27.0 57.3 <0.01
Men (%) 55.6 52.0 59.4 0.37

Women (%) 44.4 48.0 40.6 0.37

Diabetesa (%) 12.2 12 12.5 1
Hypertensionb (%) 40.8 29.0 46.9 <0.01

Hipercholesterolaemiac (%) 29.6 23.0 36.5 0.01

Current smokerd (%) 14.8 13 16.7 0.60
Obesitye (%) 38.3 39.0 37.5 0.95

Statins treatment (%) 23.0 15.0 31.3 0.01

CVD risk <10%f (%) 63.8 76.0 51.0
CVD risk 10%–19% (%) 20.9 13.0 31.3

CVD risk ≥20% (%) 15.3 11.0 17.7 <0.01

aDiabetes was defined based on the presence of drug treatment or a confirmed diagnosis based on medical records.
bHypertension was defined as participants with blood pressure values ≥140/90 mmHg or those under drug treatment.
cHigh cholesterol was defined based on the presence of total cholesterol >240 mg/dL, low-density lipoprotein cholesterol (LDL-C) > 160 mg/dL or under lipid-lowering drugs.
dPerson who currently smokes tobacco products.
eObesity was defined as a BMI ≥ 30 kg/m².
fCVD risk: <10% (low risk), 10%–19% (intermediate risk), ≥20% (high risk). y: years.
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Key features used by combined model for 
the prediction of CAC
Different models were built to predict the presence of any CAC. The 
Features Importance Analysis revealed a diverse set of genes and clinical 
variables utilized by the combined AI model to predict the presence of 
CAC. The highest-ranked features, based on feature importance, in-
cluded JUN (127.0), Age (102.8), GZMK (86.9), IPO9 (86.5), NACC1 
(84.2), PLXNC1 (81.6), ACAD10 (81.1), ADPRHL1 (80.5), and CTSF 
(80.3). Additional details regarding the remaining features used for pre-
diction are provided in Supplementary material online, Table S2.

The combined model, which included transcriptomic and clinical variables 
data, had a sensitivity of 92%, specificity of 80%, positive predictive value of 
81%, negative predictive value of 91%, and an overall accuracy of 86%. The 
false positive rate was 20%, and the false negative rate was 8.33%. There was 
no clear association between these false results and the clinical variables ana-
lysed (see Supplementary material online, Table S3).

The combined model demonstrated superior performance in classi-
fying individuals with CAC > 0, with an AUC of 0.92 (95% CI 0.88– 
0.95). This was significantly better than the transcriptomic model 
(AUC 0.79, 95% CI 0.73–0.85; P = 0.009), the clinical variables 
model (AUC 0.71, 95% CI 0.64–0.79; P < 0.001), and the CVD risk 
model (AUC 0.68, 95% CI 0.61–0.76; P < 0.001; Figure 2).

When the classification performance across different subgroups was 
explored, the combined model correctly classified 97% of cases (35/36) 
among participants with CAC >100, 96% (25/26) in those with CAC 
>0 in three vessels, and 97% (30/31) in those with CAC >0 in the 
left main coronary artery.

Net reclassification and integrated 
discrimination analysis
The data used for the calculation of the NRI is depicted in Supplementary 
material online, Table S4. The NRI for Cases (CAC > 0) was 0.5833. This 
value indicates that the AI model improved the classification of Cases by 
58.33% compared to the CVD-risk model.

The NRI for Non-Cases (CAC = 0) was −0.38. This negative value 
suggests that the AI model was less effective in correctly reclassifying 
individuals without CAC. Specifically, it indicates a 38% decrease in 

correct classification for non-cases, meaning some individuals were in-
correctly moved to a higher risk category.

The total NRI of 20.33% reflects the overall improvement in classifi-
cation accuracy when using the AI model over the CVD-risk model, 
despite the decrease in accuracy for non-cases.

The IDI analysis showed that the mean predicted probability for cor-
rectly classified cases (CAC > 0) was 1.038, while for correctly classi-
fied non-cases (CAC = 0), it was 0.856. The overall IDI was 0.138, 
indicating a 13.8% improvement in the combined model’s ability to dis-
tinguish between cases and non-cases compared to the CVD risk mod-
el. The Hosmer–Lemeshow test yielded a P-value < 0.001, suggesting 
suboptimal model calibration.

Discussion
In this pilot clinical study comprising asymptomatic individuals aged 
40–75 without a history of CVD, an AI model integrating whole blood 
transcriptome data with clinical risk factors demonstrated the ability to 
predict the presence of CAC, with incremental value over clinical 
models.

Despite a net reclassification improvement of 20%, challenges remain 
in addressing the overestimation of CAC risk in non-cases, leading to 
false positives. These misclassifications were not associated with any 
of the analysed variables, suggesting that unmeasured factors—such 
as inflammatory processes or alternative forms of subclinical athero-
sclerosis—may contribute to the discrepancies18 (see Supplementary 
material online, Table S3). Supporting this hypothesis, significant altera-
tions were observed in the expression levels of several genes implicated 
in key mechanisms of atherosclerosis, including endothelial dysfunction, 
inflammation, and lipid metabolism (see Supplementary material online, 
Tables S1 and S2). This finding suggests that the model may be capturing 
relevant molecular signatures associated with CAC development.

The combined model also demonstrated a 14% higher discrimination 
capacity between cases and non-cases compared to the baseline CVD 
risk model; however, further refinement is required due to its subopti-
mal calibration.

In a single study, a plasma microRNA panel was used to predict the 
presence of CAC in patients diagnosed with rheumatoid arthritis. The 
improvement in prediction accuracy was relatively modest when 

Figure 1 Prevalence of coronary artery calcifications according to cardiovascular risk categories. Prevalence of coronary artery calcifications accord-
ing to cardiovascular risk categories. The bar plot shows the presence of calcium in the coronary arteries according to the WHO atherosclerotic car-
diovascular disease risk and the severity of coronary artery calcifications.
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compared solely to clinical factors (c-statistic net difference 0.01 for to-
tal cases and 0.05 for severe CAC).19

In the PREDICT study, a genetic expression score (GES) was devel-
oped using a panel of 23 genes to predict obstructive coronary artery 
disease (CAD, defined as ≥50% stenosis) in symptomatic, non-diabetic 
individuals referred for invasive coronary angiography. This score was 
derived from a blood-based gene expression (RNA) panel, previously 
selected through microarray analysis. While the GES demonstrated 
promising sensitivity (83%), it exhibited relatively low specificity (43%).4

Similarly, the COMPASS study validated the diagnostic accuracy of 
the GES for identifying obstructive CAD in and independent symptom-
atic nondiabetic patients referred for myocardial perfusion imaging, ex-
tending the findings from the PREDICT study to a lower-risk population. 
The GES demonstrated strong discrimination for obstructive CAD, with 
an AUC of 0.79 (P < 0.001), outperforming clinical models. Sensitivity, 
specificity, and negative predictive value were reported at 89%, 52%, 
and 96%, respectively. However, despite these favourable outcomes, 
particularly the high sensitivity and reproducibility, the relatively low spe-
cificity implies a potential for increased false positive rates.5

Zhang et al. utilised RNA sequencing (RNA-seq) to explore differen-
tially expressed genes among individuals with a history of early myocar-
dial infarction (MI), those with high CAC without prior MI, and controls 
without elevated CAC or MI. The study identified three coding genes 
(APOD, CLNK, RASGEF1A) and one long intergenic non-coding 
RNA (lincRNA) (RP11-245J9.5) that were differentially expressed in in-
dividuals with high CAC compared to controls. Notably, APOD was 
significantly downregulated in the high CAC group (FDR = 0.01).6

Upon comparing the gene sets from our analysis with those identi-
fied in the mentioned studies, no exact gene matches were found. 
The lack of common genes may reflect variations in study design, popu-
lation characteristics, gene expression analysis techniques, and the com-
plexity of gene networks involved in atherosclerosis. This underscores 
the value of a comprehensive transcriptomic approach in capturing a 
broader range of potential biomarkers.

The predictive capacity of the methodology applied in this study can 
be attributed to the comprehensive data provided by deep RNA se-
quencing, the bioinformatic analysis methods, and the machine learning 
models employed. Over the past decade, RNA expression analysis has 
garnered increasing attention, as it captures not only genetic predispo-
sitions but also the dynamic influence of environmental factors on bio-
logical processes. Notably, alterations in gene expression have been 
associated with the development of atherosclerosis, coronary artery 
disease, and stroke, underscoring the potential of RNA analysis for 
CVD prediction.20

In addition, this methodology, unlike previous studies, focused on a 
comprehensive analysis of the entire blood transcriptome rather than 
a limited gene panel. It incorporated non-coding RNAs, circular 
RNAs, and isoforms, highlighting the interconnected nature of genes, 
which may enhance precision in disease prediction.

Although these findings provide a preliminary proof of concept for 
the use of RNA sequencing in coronary atherosclerosis prevention, 
the higher initial implementation costs of RNA sequencing and 
AI-driven models compared to standard CAC screening methods 
may constrain their widespread applicability as a screening tool. 

Figure 2 Comparative evaluation of model discrimination for predicting coronary artery calcifications.
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Nonetheless, the potential prognostic value of this methodology in pre-
dicting incident cardiovascular events represents a promising area for 
future research.

This study has several limitations that could potentially impact the re-
sults. First, the observed gene expression pattern among cases does not 
correspond to a specific CAC level but rather reflects molecular altera-
tions associated with an increased likelihood of a CAC score greater than 
0. Second, there is a potential for misclassification bias in calcium scoring 
due to the use of non-gated CT. However, this bias is unlikely to signifi-
cantly affect the results, given the well-documented high agreement be-
tween gated and non-gated CT scans.9,10 Notwithstanding, it should be 
stressed that as an exploratory study, we decided to perform ungated 
chest CT scans to simultaneously assess the thoracic aortic calcium 
and the liver fat content, which will be reported independently. Third, 
the lack of direct laboratory measures in this study may contribute to 
the inferior performance of the CVD risk model. To address this limita-
tion in the clinical model, we incorporated the diagnosis of hypercholes-
terolaemia (total or LDL) or the status of being on lipid-lowering 
treatment from medical records. For the CVD risk assessment, we em-
ployed the WHO non-laboratory-based chart specifically developed for 
the Southern Latin American population. Notably, the predictive per-
formance for CAC in our study (AUC 0.68) closely aligns with that re-
ported by other cholesterol-based risk equations (AUC 0.67–0.73).21

Fourth, therapies such as statins and anticoagulants have been associated 
with CAC progression. However, this effect is unlikely to significantly im-
pact the model’s ability to predict the presence of CAC.22,23

Finally, our findings may not be directly extrapolated to other popu-
lations, as differences in genomic backgrounds could influence the re-
sults. However, we expect the impact of genetic diversity on model 
performance to be minimal, as gene expression has been extensively 
demonstrated to be robust across various experimental settings. 
Additionally, several factors limit the generalizability of our findings, in-
cluding the opportunistic sampling method, relatively small sample size, 
extensive exclusion criteria, and suboptimal calibration.

While this study offers a preliminary proof of concept for the use of 
RNA sequencing in coronary atherosclerosis prevention, these findings 
should be interpreted with caution due to the study’s limitations. 
Nonetheless, future studies with larger sample sizes, comprehensive la-
boratory testing, and clinical outcomes are required to achieve more 
robust validation.

Conclusions
In this pilot study, an AI model integrating whole blood transcriptome 
data with clinical risk factors demonstrated the ability to predict CAC, 
providing incremental value over clinical models in asymptomatic indi-
viduals aged 40–75 without a history of CVD. Further studies are 
needed to achieve more robust validation.
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