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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cog-
nitive decline and complex molecular changes. Extracellular vesicles (EVs), particularly
exosomes, play a key role in intercellular communication and disease progression, trans-
porting proteins, lipids, and nucleic acids. While altered exosomal mRNA profiles have
emerged as potential biomarkers for AD, the relationship between mRNA expression and
AD neuropsychological deficits remains unclear. Here, we investigated the correlation
between exosomx10-derived mRNA signatures and neuropsychological performance in
a cohort from Barranquilla, Colombia. Expression profiles of 16,585 mRNAs in 15 AD
patients and 15 healthy controls were analysed using Generalized Linear Models (GLMs)
and the Predictive Power Score (PPS). We identified significant correlations between specific
mRNA signatures and key neuropsychological variables, including the Mini-Mental State
Examination (MMSE), Montreal Cognitive Assessment (MoCA), Functional Assessment
Screening Tool (FAST), Boston Naming Test, and Rey–Osterrieth Figure test. These mRNAs
were in key AD-associated genes (i.e., GABRB3 and CADM1), while other genes are novel
(i.e., SHROOM3, SLC7A2, GJB4, and XBP1). PPS analyses further revealed predictive
relationships between mRNA expression and neuropsychological variables, accounting
for non-linear patterns and asymmetric associations. If replicated in more extensive and
heterogeneous studies, these findings provide critical insights into the molecular basis
governing the natural history of AD, potential personalized and non-invasive diagnosis,
prognosis, follow-up, and potential targets for future therapies.
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1. Introduction
Alzheimer’s disease (AD), a complex neurodegenerative disorder characterized by

cognitive decline, memory loss, and the accumulation of amyloid plaques and neurofibril-
lary tangles in the brain [1], is the leading cause of dementia among older adults, with the
number projected to reach 153 million people by 2050 [2].

While AD mechanisms are still being researched, extracellular vesicles (EVs), especially
exosomes, are increasingly implicated in disease risk and progression [3–5]. These EVs are
nano-sized membranx10-bound vesicles released by cells into the extracellular environment
that mediate intercellular communication by transporting proteins, lipids, and nucleic
acids [4,6]. EVs contribute to the spread of pathogenic proteins like amyloid-beta (Aβ) and
tau, causing neuronal damage [4]. In addition, AD-derived EVs contain elevated levels of
toxic proteins, and the EV composition is altered [6]. Thus, messenger RNAs (mRNAs),
long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) present within EVs offer
a rich source of information regarding AD pathobiology [3,4,7,8].

Research studies comparing the exosomal mRNA content between AD patients and
healthy controls have identified potential biomarkers associated with disease progression
and related conditions [9–14]. These studies often employ RNA sequencing techniques to
analyze the mRNA profiles of EVs isolated from various biological fluids, including blood
and cerebrospinal fluid [5,15], and hold promise for developing non-invasive diagnostic
tests for AD [5]. Interestingly, differentially expressed mRNAs between individuals with
AD and healthy controls are often associated with pathways implicated in AD pathogenesis,
such as amyloidogenesis, tauopathy, neuroinflammation, and neuronal apoptosis [5,15].
More recently, our group identified several key mRNA transcripts associated with AD
susceptibility and AD age of onset (ADAOO) [8].

Despite the promising findings from our and other research studies showing altered
mRNA profiles in individuals with AD, and the potential of exosomx10-derived mRNA
expression levels as non-invasive biomarkers for AD susceptibility and ADAOO prediction,
the relationship between mRNA expression and the neuropsychological profiles of AD
remains poorly understood. Although research in this area is still in its early stages, some
studies suggest potential correlations. For instance, changes in exosomx10-derived mRNA
levels associated with neuronal function and inflammation may be linked to deficits in mem-
ory, executive function, and other cognitive domains as assessed by neuropsychological
tests [4,6].

Here, we hypothesize that specific exosomx10-derived mRNA signatures define the
architecture of AD neuropsychological profiles outlined by language, memory, executive
function, and praxis deficiencies. Using advanced data analytics tools, we study how the
expression of 16,580 mRNA signatures correlates with AD neuropsychological domains
and identify mRNAs that could serve as potential biomarkers of neuropsychological
deficiencies in patients with AD and narrow down the potential ADAOO in those affected
patients. While validation in more extensive and more diverse cohorts is crucial, our
findings establish a framework to investigate how mRNA expression profiles correlate
with distinct neuropsychological deficits in AD. This work bridges molecular findings with
the natural history of the disease, personalized and non-invasive diagnosis, prognosis,
and longitudinal monitoring strategies. Furthermore, these insights may accelerate the
development of personalized therapies by prioritizing candidate targets for intervention.

2. Results
2.1. Subjects

We collected data from 30 individuals (22 [73.3%] females, 15 [50%] with AD) through
our clinical evaluation protocols. Table 1 summarizes the results of the neuropsycho-
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logical examinations. As expected, we identified statistically significant differences in
key neuropsychological variables between healthy controls and individuals diagnosed
with AD.

Table 1. Neuropsychological characteristics of individuals included in this study.

Variable Cases Controls W a p-Value

Mean (SD)
Age (years) 77.5 (8.5) 82.1 (8.6) 900 <0.001
MMSE 13.9 (9.5) 25.2 (5.6) 855 <0.001
MoCA 5.5 (5.3) 25.9 (2.9) 224 <0.001
FAST 4.5 (3.2) 2.5 (0.6) 19 <0.001
Boston Naming Test

Spontaneous clues 14.1 (11.6) 37.5 (13.9) 200.5 <0.001
Semantic clues 0.7 (1.2) 1.3 (1.4) 138.5 0.248
Total score 14.8 (12.1) 38.7 (14.2) 201.5 <0.001

Verbal Fluency
Letter “a” 3.4 (2.8) 11.2 (3.7) 212.5 <0.001
Letter “c” 4.5 (3.8) 8.7 (4) 177 0.008

Phonological fluency
Letter ”a” 2.6 (3.4) 8.6 (4.8) 191 0.001
Letter “s” 2.8 (2.8) 8.3 (5.3) 179 0.006
Letter “f” 3.6 (3.8) 8.2 (5.8) 163.5 0.035

Trail Making Test
Part A 115.5 (79.8) 109 (77) 101 0.648
Part B 145.4 (130.8) 233 (105) 157.5 0.063

Token test 14.1 (10) 26.2 (10.8) 187 0.002
Lawton and Brody test 1.7 (1.4) 0.3 (0.8) 175.5 0.003
ROCFT

Copy 5.6 (9.2) 24.7 (13.5) 193 <0.001
Recall 1.3 (2.4) 6.3 (5.6) 181 0.004
AVMR, “Yes” 6.7 (6.4) 11.7 (4.1) 169.5 0.018
AVMR, “No” 7.3 (6.2) 11.9 (5.2) 163 0.033

Stroop test
Words 33.2 (17.3) 60.1 (32.4) 178 0.007
Colours 20.3 (13) 39.4 (22.2) 170 0.018

Wisconsin Card
Sorting Test

Categories 0.7 (0.9) 2.6 (2.2) 170 0.015
NPE 25.8 (24.1) 20.5 (29.9) 89 0.339
Perseverant errors 26.1 (19.2) 18.9 (12.9) 87.5 0.309
Correct responses 25.1 (23.8) 42.8 (40.1) 137 0.319

a Mann–Whitney–Wilcoxon non-parametric statistic. The reported p-value was not adjusted for covariates. AVMR:
Auditory-verbal memory recognition; FAST: Functional Assessment Screening Tool; MMSE: Mini-Mental State
Examination; MoCA: Montreal Cognitive Assessment; NPE: Non-perseverant errors; ROCFT: Rey–Osterrieth
Complex Figure test.

2.2. mRNA Signatures Contributing to Neuropsychological Manifestations of AD

We quantified the expression of 16,585 mRNAs across all participants. A detailed
analysis of these variables revealed that the expression of specific transcripts is associated
with either enhanced or diminished performance. Figure 1 depicts the Manhattan plots for
the neuropsychological variables with statistically significant results after correcting for
multiple testing.
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Figure 1. Manhattan plots showing mRNA signatures correlated with neuropsychological variables
in a sample of individuals with AD and healthy controls from Barranquilla, Colombia. The horizontal
red line corresponds to Bonferroni’s threshold. BNT: Boston Naming Test. Other conventions are in
Table 1.

Table 2 reports the top mRNAs that are statistically significantly correlated with neu-
ropsychological variables. We found 16 mRNAs to be statistically significantly correlated
with the components of the ROCFT (Table 2). Some of these transcripts either increase or
decrease the performance in the Copy or Recall components of ROCFT and are harbored
in TMEM239, XBP1, LCP1, SGTA, PDE2A, GJB4, PCSK5, DYNC2H1, TEKT4, and PRKCZ
genes (Table 2). For instance, higher expression levels of ENST00000361033 (TMEM239)
are associated with a lower score in the Copy component of the ROCFT (Table 2). On the
other hand, higher expression values of ENST00000295201 (TEKT4) increase the score in
the Recall component of the ROCFT (Table 2).

A total of 157 mRNAs were potentially correlated with the Number of Sponta-
neous Clues. Regarding the Total Number of Correct responses, this number increased
to 463 mRNAs (Table S1, Supplementary Material). Of these, mRNAs within the RIN3,
MMP2, PRTN3, PSMD5, CINP, CCDC70, and SLC7A2 genes are positively correlated
with the Number of Spontaneous Clues of the Boston Naming Test, while expression in
ENST00000004531 (SLC7A2) is associated with a decrease in the Total Number of Correct
responses (Table 2).
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Table 2. Top 10 mRNAs correlated with AD for each neuropsychological variable. Conventions as in Table 1.

Test Transcript Chr Position a Gene β̂(ŜEβ̂) p pBonferroni

ROCFT
Copy ENST00000382830 21 31,962,424 KRTAP22-2 0.567 (0.076) 6.74 × 10−14 1.12 × 10−9

ENST00000361033 20 2,796,948 TMEM239 −1.384 (0.185) 7.41 × 10−14 1.23 × 10−9

ENST00000380210 9 21,349,834 IFNA6 0.396 (0.053) 8.14 × 10−14 1.35 × 10−9

ENST00000216037 22 29,190,543 XBP1 0.475 (0.064) 1.06 × 10−13 1.76 × 10−9

ENST00000398576 13 46,700,055 LCP1 −0.268 (0.037) 3.64 × 10−13 6.04 × 10−9

ENST00000221566 19 2,754,712 SGTA −0.992 (0.137) 4.74 × 10−13 7.86 × 10−9

ENST00000334456 11 72,287,185 PDE2A 0.387 (0.054) 5.11 × 10−13 8.48 × 10−9

ENST00000295201 2 95,537,188 TEKT4 1.205 (0.17) 1.29 × 10−12 2.14 × 10−8

ENST00000360242 18 66,465,317 CCDC102B −0.639 (0.091) 2.00 × 10−12 3.31 × 10−8

ENST00000544413 12 121,416,552 HNF1A −1.399 (0.2) 2.45 × 10−12 4.06 × 10−8

Recall HBMT00000891055 20 47,127,407 CATG00000053459.1 −0.845 (0.169) 5.33 × 10−7 8.84 × 10−3

ENST00000339480 1 35,225,342 GJB4 −0.852 (0.174) 1.03 × 10−6 1.70 × 10−2

ENST00000545128 9 78,505,560 PCSK5 −0.972 (0.205) 2.08 × 10−6 3.45 × 10−2

ENST00000398093 11 102,980,304 DYNC2H1 1.23 (0.261) 2.46 × 10−6 4.08 × 10−2

ENST00000295201 2 95,537,188 TEKT4 1.375 (0.294) 2.95 × 10−6 4.89 × 10−2

ENST00000378567 1 1,981,909 PRKCZ −1.004 (0.215) 2.95 × 10−6 4.90 × 10−2

BNT
Spontaneous Clues ENST00000216487 14 92,980,118 RIN3 0.453 (0.081) 2.39 × 10−8 3.97 × 10−4

ENCT00000457686 9 90,652,380 CATG00000108922.1 0.554 (0.101) 4.36 × 10−8 7.22 × 10−4

ENCT00000061513 10 134,202,355 CATG00000001242.1 −0.44 (0.081) 5.67 × 10−8 9.40 × 10−4

ENST00000219070 16 55,512,883 MMP2 −0.445 (0.084) 1.15 × 10−7 1.91 × 10−3

ENCT00000228958 2 119,913,597 CATG00000044356.1 −0.788 (0.159) 6.86 × 10−7 1.14 × 10−2

ENST00000234347 19 840,960 PRTN3 −0.443 (0.09) 8.98 × 10−7 1.49 × 10−2

ENST00000210313 9 123,578,331 PSMD5 −0.243 (0.05) 9.45 × 10−7 1.57 × 10−2

ENST00000216756 14 102,814,619 CINP 0.264 (0.054) 1.13 × 10−6 1.87 × 10−2

ENST00000242819 13 52,436,117 CCDC70 −0.498 (0.103) 1.36 × 10−6 2.25 × 10−2

ENST00000004531 8 17,396,286 SLC7A2 −0.366 (0.077) 2.07 × 10−6 3.43 × 10−2

Total ENCT00000061513 10 134,202,355 CATG00000001242.1 −0.458 (0.08) 9.05 × 10−9 1.50 × 10−4

ENCT00000457686 9 90,652,380 CATG00000108922.1 0.552 (0.099) 2.81 × 10−8 4.66 × 10−4

ENST00000004531 8 17,396,286 SLC7A2 −0.396 (0.076) 1.57 × 10−7 2.60 × 10−3

ENCT00000228958 2 119,913,597 CATG00000044356.1 −0.808 (0.155) 1.89 × 10−7 3.14 × 10−3

ENCT00000380453 6 168,062,372 CATG00000086946.1 0.377 (0.075) 4.66 × 10−7 7.73 × 10−3

ENCT00000200728 19 3,630,183 CATG00000038258.1 0.264 (0.055) 1.35 × 10−6 2.25 × 10−2

ENCT00000029805 1 109,072,893 CATG00000070137.1 0.256 (0.054) 1.78 × 10−6 2.96 × 10−2
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Table 2. Cont.

Test Transcript Chr Position a Gene β̂(ŜEβ̂) p pBonferroni

ENCT00000447643 9 88,474,187 CATG00000105979.1 −0.342 (0.073) 2.41 × 10−6 4.00 × 10−2

ENCT00000424376 8 41,121,640 CATG00000098647.1 0.351 (0.075) 2.47 × 10−6 4.10 × 10−2

ENCT00000370852 6 29,601,041 CATG00000083443.1 0.261 (0.056) 2.78 × 10−6 4.61 × 10−2

TMT
Part A ENST00000228506 12 121,124,672 MLEC −43.181 (5.064) 1.00 × 10−8 1.66 × 10−4

Part B MICT00000221720 20 60,942,556 CATG00000053936.1 −86.275 (11.342) 7.61 × 10−8 1.26 × 10−3

ENST00000263246 22 43,265,777 PACSIN2 −69.407 (11.271) 2.31 × 10−6 3.83 × 10−2

Token test MICT00000383608 Y 18,943,870 CATG00000114908.1 −0.71 (0.134) 1.15 × 10−7 1.91 × 10−3

ENST00000296043 4 77,356,253 SHROOM3 −0.663 (0.13) 3.16 × 10−7 5.24 × 10−3

ENST00000380534 9 18,927,656 SAXO1 0.728 (0.142) 3.16 × 10−7 5.24 × 10−3

Stroop test
Colours ENCT00000309252 3 134,030,483 CATG00000066161.1 −0.565 (0.098) 7.53 × 10−9 1.25 × 10−4

ENST00000216037 22 29,190,543 XBP1 0.251 (0.044) 1.06 × 10−8 1.76 × 10−4

ENST00000174618 17 2,287,354 MNT 0.225 (0.04) 1.44 × 10−8 2.39 × 10−4

ENST00000215743 22 24,115,006 MMP11 0.439 (0.085) 2.61 × 10−7 4.34 × 10−3

ENST00000221566 19 2,754,712 SGTA −0.456 (0.09) 4.03 × 10−7 6.68 × 10−3

ENST00000223369 7 44,240,648 YKT6 −0.349 (0.07) 6.00 × 10−7 9.95 × 10−3

ENST00000216133 22 39,526,777 CBX7 0.293 (0.062) 2.17 × 10−6 3.60 × 10−2

ENST00000231228 5 158,741,791 IL12B −0.22 (0.047) 2.32 × 10−6 3.85 × 10−2

ENCT00000193672 18 60,987,564 CATG00000036339.1 −0.328 (0.07) 2.59 × 10−6 4.29 × 10−2

ENCT00000431277 8 144,959,539 CATG00000101329.1 −0.381 (0.082) 2.98 × 10−6 4.94 × 10−2

Words ENST00000171111 19 10,596,796 KEAP1 0.271 (0.043) 2.40 × 10−10 3.98 × 10−6

ENST00000201647 19 55,587,269 EPS8L1 −0.369 (0.065) 1.46 × 10−8 2.43 × 10−4

ENST00000250160 8 134,203,282 WISP1 −0.252 (0.047) 7.78 × 10−8 1.29 × 10−3

ENST00000251453 19 39,923,847 RPS16 0.334 (0.066) 4.46 × 10−7 7.39 × 10−3

ENST00000225698 17 5,336,097 C1QBP −0.223 (0.045) 6.24 × 10−7 1.03 × 10−2

ENCT00000309252 3 134,030,483 CATG00000066161.1 −0.371 (0.077) 1.28 × 10−6 2.12 × 10−2

ENST00000230588 6 46,761,127 MEP1A −0.238 (0.049) 1.43 × 10−6 2.37 × 10−2

ENST00000225567 17 45,000,486 GOSR2 −0.345 (0.072) 1.82 × 10−6 3.03 × 10−2

ENST00000216254 22 41,865,129 ACO2 0.267 (0.056) 1.96 × 10−6 3.25 × 10−2
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Table 2. Cont.

Test Transcript Chr Position a Gene β̂(ŜEβ̂) p pBonferroni

WCST
Correct responses ENCT00000012768 1 156,638,559 CATG00000020670.1 0.736 (0.085) 4.37 × 10−18 7.25 × 10−14

ENCT00000000389 1 1,874,595 CATG00000071025.1 −0.679 (0.08) 2.46 × 10-17 4.09 × 10−13

ENCT00000004417 1 38,891,158 CATG00000115972.1 0.19 (0.023) 4.03 × 10−16 6.68 × 10−12

ENCT00000000232 1 1,138,890 CATG00000019495.1 −0.566 (0.082) 4.07 × 10−12 6.75 × 10−8

ENCT00000000644 1 4,077,807 CATG00000116876.1 −0.654 (0.095) 6.99 × 10−12 1.16 × 10−7

ENCT00000002816 1 25,046,862 CATG00000062929.1 −0.389 (0.061) 1.34 × 10−10 2.22 × 10−6

ENCT00000001323 1 10,960,567 CATG00000015125.1 0.479 (0.078) 6.95 × 10−10 1.15 × 10−5

ENCT00000003570 1 30,996,263 CATG00000087839.1 0.31 (0.051) 1.32 × 10−9 2.19 × 10−5

ENCT00000002257 1 19,234,224 CATG00000038794.1 0.513 (0.092) 2.23 × 10−8 3.70 × 10−4

ENCT00000004031 1 35,331,806 CATG00000107162.1 −0.287 (0.059) 1.02 × 10−6 1.69 × 10−2

NPE ENCT00000000276 1 1,284,939 CATG00000033020.1 −1.178 (0.137) 1.08 × 10−17 1.80 × 10−13

ENCT00000020781 1 1,964,944 CATG00000043697.1 −0.899 (0.109) 1.47 × 10−16 2.43 × 10−12

ENCT00000005948 1 53,558,713 CATG00000001175.1 0.614 (0.083) 1.37 × 10−13 2.28 × 10−9

ENCT00000020405 1 984,575 CATG00000042982.1 −0.479 (0.068) 2.20 × 10−12 3.64 × 10−8

ENCT00000004031 1 35,331,806 CATG00000107162.1 −0.426 (0.069) 6.99 × 10−10 1.16 × 10−5

ENCT00000000644 1 4,077,807 CATG00000116876.1 −0.55 (0.102) 7.09 × 10−8 1.18 × 10−3

ENCT00000020445 1 1,087,776 CATG00000043113.1 0.752 (0.14) 7.36 × 10−8 1.22 × 10−3

ENCT00000002816 1 25,046,862 CATG00000062929.1 −0.374 (0.07) 9.87 × 10−8 1.64 × 10−3

ENCT00000018210 1 225,841,146 CATG00000037190.1 0.258 (0.051) 3.41 × 10−7 5.65 × 10−3

ENCT00000029656 1 104,998,991 CATG00000069026.1 −0.543 (0.115) 2.43 × 10−6 4.03 × 10−2

Perseverant errors ENCT00000228958 2 119,913,597 CATG00000044356.1 −0.731 (0.135) 6.09 × 10−8 1.01 × 10−3

ENCT00000045141 10 38,027,225 CATG00000112585.1 0.453 (0.084) 7.49 × 10−8 1.24 × 10−3

ENCT00000272151 21 46,270,031 CATG00000056264.1 −0.37 (0.071) 1.83 × 10−7 3.03 × 10−3

ENCT00000263490 20 61,077,116 CATG00000053945.1 0.626 (0.124) 4.77 × 10−7 7.91 × 10−3

ENCT00000474207 X 2,742,248 CATG00000112964.1 −0.361 (0.073) 6.42 × 10−7 1.07 × 10−2

ENCT00000431277 8 144,959,539 CATG00000101329.1 0.422 (0.088) 1.47 × 10−6 2.44 × 10−2

ENCT00000113077 13 55,351,449 CATG00000014934.1 0.49 (0.103) 1.92 × 10−6 3.18 × 10−2

ENST00000055682 X 73,952,691 NEXMIF −0.323 (0.068) 2.28 × 10−6 3.78 × 10−2

ENST00000013807 19 45,916,692 ERCC1 −0.383 (0.081) 2.30 × 10−6 3.81 × 10−2

ENCT00000202697 19 17,008,342 CATG00000038771.1 0.393 (0.083) 2.43 × 10−6 4.02 × 10−2

a UCSC GRCh37/hg19 coordinates. BNT: Boston Naming Test.
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Evaluation of the potential association between Parts A and B of the Trail Making Test
(TMT) and mRNA expression identified three transcripts—MLEC, CATG00000053936.1
(LAMA5), and PACSIN2—that were associated with reduced performance in the TMT
(Table 2). The expression of mRNAs located in the CATG00000114908.1 (CDY2B), SHROOM3,
and SAXO1 genes was found to be statistically significantly associated with performance
in the Token test (Table 2). For instance, increased levels of MICT00000383608 (CDY2B)
and ENST00000296043 (SHROOM3) are associated with poorer performance in the To-
ken test, while increased expression of ENST00000380534 (SAXO1) correlated with better
performance (Table 2).

Correlation analyses between mRNA expression levels and the Colors component of
the Stroop test identified 157 statistically significant transcripts after correcting for multiple
testing (Table S2, Supplementary Material). The most significant positive correlations
with improved performance in the Colors test were observed for mRNAs associated with
the XBP1, MNT, MMP11, and CBX7 genes (Table 2). Conversely, mRNAs linked to the
CATG00000066161.1 (AMOTL2), SGTA, YKT6, IL12B, CATG00000036339.1 (BCL2), and
CATG00000101329.1 (EPPK1) genes were negatively correlated (Table 2).

On the other hand, a total of 98 mRNAs were identified as significantly corre-
lated with the number of words in the Stroop test after correction for multiple testing
(Table S3, Supplementary Material). Table 2 shows the top 10 associated mRNAs. Specif-
ically, mRNAs harbored in the KEAP1, RPS16, ACO2, and MT4 genes are positively cor-
related with improved performance (Table 2). Conversely, mRNAs within the EPS8L1,
WISP1, C1QBP, CATG00000066161.1 (AMOTL2), MEP1A, and GOSR2 genes were negatively
correlated with performance (Table 2).

Finally, we identified several transcripts significantly correlated with an increased
performance in the number of correct responses, non-perseverant errors, and persever-
ant errors of the Wisconsin Card Sorting Test (WCST) after correcting for multiple test-
ing (Table S4, Supplementary Material). Table 2 reports the top 10 mRNAs. Although
many transcripts are in genomic regions without annotated genes, these regions may
still play significant roles in gene regulation and cellular function. Of particular interest
are ENST00000055682 (NEXMIF) and ENST00000013807 (ERCC1), whose expressions are
correlated with a lower number of perseverant errors (Table 2).

2.3. PPS of mRNA Signatures Across Neuropsychological Tests

Figure 2 shows the distribution of the PPS across all neuropsychological variables.
As expected, these distributions are asymmetric. On average, 18.24% of mRNAs have a
negligible PPS, implying that these transcripts offer no diagnostic power on the neuropsy-
chological variables of interest. Among those with a PPS > 0, the minimum PPS value is
0.072 (BNT [semantic clues]) and the maximum is 0.361 (FAST).

Table 3 reports the top five mRNAs with the highest PPS for each neuropsychological
variable. Some of these transcripts are harboured in genes associated with key biolog-
ical processes generally disrupted in individuals with AD, and show decent predictive
power for assessing the neuropsychological manifestations of AD. Across all neuropsy-
chological variables, the mRNA with the maximum PPS across all neuropsychological
was ENST00000311550 (GABRB3; PPS = 0.647) in MoCA, followed by ENST00000343289
(NT5C2; PPS = 0.439) in MoCA test, ENST00000299367 (ATP6V1D; PPS = 0.430) in Lawton
and Brody, and ENST00000340116 (ENOSF1; PPS = 0.428) and ENST00000331581 (CADM1;
PPS = 0.425) in MoCA (Table 3). Other identified transcripts with high PPS are harboured
in genes to the pathophysiological changes typically observed in AD (i.e., AMY2A, ANKH,
ATP6V1D and B4GALT1), genes associated to cognitive decline, memory impairment, and
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other neuropsychological manifestations in AD (i.e., MECP2, S100B, GABRB3, BTBD16 and
AP003108.2), and neuroinflammation (i.e., S100B, CTLA4 and CARD6) (Table 3).

Figure 2. PPS distribution of mRNA signatures by neuropsychological test. BNT: Boston Naming
Test. Other conventions are in Table 1.

Table 3. mRNAs with the highest PPS for each neuropsychological test. Conventions as in Table 2.

Variable Transcript Chr Position Gene PPS

AVMR
No ENST00000295268 4 98,480,027 STPG2 0.295

ENST00000474844 1 46,805,849 NSUN4 0.295
ENST00000274773 5 180,620,924 TRIM7 0.293
ENST00000623276 6 28,234,931 ZSCAN26 0.289
ENST00000317907 2 32,853,129 TTC27 0.273

Yes ENST00000307395 3 128,779,610 GP9 0.347
ENST00000299608 18 66,340,925 TMX3 0.331
ENST00000609883 X 71,347,574 RTL5 0.329
ENST00000343053 9 140,149,625 NELFB 0.322
ENST00000409299 20 32,290,560 PXMP4 0.316

BNT
Spontaneous clues ENST00000274773 5 180,620,924 TRIM7 0.391

ENST00000361900 15 75,287,939 SCAMP5 0.298
ENST00000375581 13 113,760,121 F7 0.287
ENST00000368751 1 153,065,611 SPRR2E 0.274
ENST00000524140 19 16,830,791 NWD1 0.264
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Table 3. Cont.

Variable Transcript Chr Position Gene PPS

Semantic clues ENST00000517870 1 53,099,016 SHISAL2A 0.374
ENST00000622339 1 104,159,433 AMY2A 0.361
ENST00000330233 14 105,952,654 CRIP1 0.336
ENST00000254691 5 40,841,286 CARD6 0.320
ENST00000409790 16 11,038,345 CLEC16A 0.311

Total ENST00000274773 5 180,620,924 TRIM7 0.386
ENST00000361900 15 75,287,939 SCAMP5 0.304
ENST00000375581 13 113,760,121 F7 0.292
ENST00000262426 16 86,544,133 FOXF1 0.275
ENST00000323853 2 96,940,074 SNRNP200 0.267

FAST ENST00000378165 10 15,149,865 NMT2 0.271
ENST00000311550 15 26,788,693 GABRB3 0.227
ENST00000611257 17 34,493,061 TBC1D3B 0.209
ENST00000643399 10 71,038,252 HK1 0.167
ENST00000290158 17 45,727,204 KPNB1 0.160

Lawton and Brody ENST00000216442 14 67,804,788 ATP6V1D 0.306
ENST00000297770 8 68,334,307 CPA6 0.308
ENST00000318225 3 126,268,516 C3orf22 0.315
ENST00000250056 17 6,347,761 PIMREG 0.341
ENST00000299367 6 31,895,254 C2 0.430

MMSE ENST00000528494 11 46,639,150 ATG13 0.221
ENST00000304385 4 153,539,784 TMEM154 0.232
ENST00000394152 7 99,214,571 ZSCAN25 0.240
ENST00000262426 16 86,544,133 FOXF1 0.247
ENST00000274773 5 180,620,924 TRIM7 0.292

MoCA ENST00000311550 15 26,788,693 GABRB3 0.647
ENST00000343289 10 104,847,775 NT5C2 0.439
ENST00000340116 18 6739 ENOSF1 0.428
ENST00000331581 11 115,047,015 CADM1 0.425
FTMT26400003890 16 67,267,859 FHOD1 0.423

Phonological fluency
Letter “a” ENST00000355790 10 72,058,729 LRRC20 0.255

ENST00000611257 17 34,493,061 TBC1D3B 0.235
ENST00000382258 13 24,153,499 TNFRSF19 0.224
ENST00000379731 9 33,110,635 B4GALT1 0.224
ENST00000374510 9 113,065,867 TXNDC8 0.222

Letter “f” ENST00000355790 10 72,058,729 LRRC20 0.297
ENST00000296043 4 77,356,253 SHROOM3 0.277
ENST00000259883 6 28,249,349 PGBD1 0.242
ENST00000340913 12 54,674,539 HNRNPA1 0.231
HBMT00001348771 7 140,772,165 TMEM178B 0.228

Letter “s” ENST00000284268 5 14,704,909 ANKH 0.224
ENST00000598357 19 45,842,445 L47234.1 0.215
ENST00000222990 7 2,291,405 SNX8 0.211
ENST00000355790 10 72,058,729 LRRC20 0.206
ENST00000305366 3 149,086,809 TM4SF1 0.206

ROCFT
Copy ENCT00000073979 11 1,403,334 BRSK2 0.336

ENST00000274773 5 180,620,924 TRIM7 0.327
ENST00000310248 12 48,595,866 OR10AD1 0.300
ENST00000418703 12 110,220,890 TRPV4 0.298
ENST00000300433 17 48,348,767 TMEM92 0.293
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Table 3. Cont.

Variable Transcript Chr Position Gene PPS

Recall ENST00000334571 14 74,416,996 COQ6 0.330
ENST00000578812 17 8,282,463 RPL26 0.316
ENST00000310248 12 48,595,866 OR10AD1 0.301
ENST00000358607 19 18,699,535 REX1BD 0.288
ENST00000382723 4 4,861,393 MSX1 0.285

Stroop test
Colors ENST00000278483 11 86,013,265 HIKESHI 0.323

ENST00000335852 1 156,213,112 PAQR6 0.264
ENST00000283928 7 27,870,192 JAZF1 0.237
MICT00000155430 17 76,171,134 TK1 0.230
ENST00000300093 16 23,690,143 PLK1 0.215

Words MICT00000155430 17 76,171,134 TK1 0.249
ENST00000278483 11 86,013,265 HIKESHI 0.217
ENST00000540200 17 26,674,203 POLDIP2 0.205
ENST00000378981 X 30,261,847 MAGEB1 0.204
HBMT00000611233 17 75,249,896 CATG00000032482.1 0.194

TMT
Part A ENST00000302823 2 204,732,509 CTLA4 0.250

ENST00000428112 1 47,024,371 MKNK1 0.238
MICT00000156619 17 79,759,048 GCGR 0.219
ENST00000291700 21 48,018,875 S100B 0.216
ENST00000354905 3 190,146,444 TMEM207 0.215

Part B ENST00000304385 4 153,539,784 TMEM154 0.421
ENST00000274773 5 180,620,924 TRIM7 0.414
ENST00000241051 11 33,037,410 DEPDC7 0.302
ENST00000498273 1 62,660,503 L1TD1 0.283
ENST00000398399 3 86,987,119 VGLL3 0.273

Token test ENST00000274773 5 180,620,924 TRIM7 0.254
ENST00000304385 4 153,539,784 TMEM154 0.215
ENST00000278483 11 86,013,265 HIKESHI 0.212
ENST00000375581 13 113,760,121 F7 0.208
ENST00000301838 11 70,049,269 FADD 0.202

Verbal Fluency
Letter “a” ENST00000375581 13 113,760,121 F7 0.298

ENST00000379052 6 17,281,577 RBM24 0.272
ENST00000397095 7 1,094,921 GPR146 0.271
ENST00000311550 15 26,788,693 GABRB3 0.262
ENST00000427500 1 155,204,350 GBA 0.262

Letter “c” ENST00000274773 5 180,620,924 TRIM7 0.286
ENST00000375259 9 99,082,992 SLC35D2 0.226
ENST00000367175 1 204,586,298 LRRN2 0.220
ENST00000611870 16 76,311,176 CNTNAP4 0.215
ENST00000457091 7 6,537,405 GRID2IP 0.205

WCST
Categories ENST00000256495 3 5,020,801 BHLHE40 0.316

HBMT00000611233 17 75,249,896 CATG00000032482.1 0.285
ENST00000379731 9 33,110,635 B4GALT1 0.264
ENST00000230640 5 54,603,588 MTREX 0.254
ENST00000404371 2 10,923,519 PDIA6 0.245
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Table 3. Cont.

Variable Transcript Chr Position Gene PPS

Correct responses ENST00000230640 5 54,603,588 MTREX 0.291
ENST00000281961 2 39,893,059 TMEM178A 0.281
ENST00000243253 3 127,771,212 SEC61A1 0.268
ENST00000453960 X 153,295,685 MECP2 0.267
ENST00000608842 22 18,893,866 DGCR6 0.266

NPE ENST00000260723 10 124,030,821 BTBD16 0.252
ENST00000360428 18 28,569,974 DSC3 0.249
ENST00000267436 14 50,709,152 L2HGDH 0.245
ENST00000345080 6 105,404,923 LIN28B 0.241
ENST00000292907 19 36,641,824 COX7A1 0.237

Perseverant errors ENST00000255465 13 37,006,495 CCNA1 0.291
ENST00000541135 11 61,197,528 AP003108.2 0.239
ENST00000375460 1 17,575,593 PADI3 0.238
ENST00000305632 7 72,981,863 TBL2 0.234
ENST00000427926 22 19,166,986 CLTCL1 0.222

3. Discussion
In this study, we investigated the relationship between exosomes-derived mRNA sig-

natures and the neuropsychological manifestations of AD in individuals from Barranquilla,
Colombia. Comparison between individuals diagnosed with AD and healthy controls
revealed important differences in cognitive performance as measured by several neuropsy-
chological tests, including the Mini-Mental State Examination (MMSE), Montreal Cognitive
Assessment (MoCA), Functional Assessment Screening Tool (FAST), Boston Naming Test
(BNT), Verbal Fluency, Phonological Fluency, Trail Making Test (TMT), Rey–Osterrieth
Complex Figure (ROCFT), Stroop test and one of the components of the Wisconsin Card
Sorting test (WCST)(Table 1).

Analysis of mRNA transcripts using Generalized Linear Models (GLMs) identified
significant correlations between mRNA expression levels and neuropsychological test
performance in this cohort (Figure 1; Table 2). Several of these mRNAs are typically
altered in AD, extending prior research on exosomal mRNA as potential biomarkers for
AD [3,8,16–19]. Our findings suggest that changes in exosomal mRNA expression may
contribute to the cognitive deficits characteristic of AD [9,20–22]. While some of these
mRNAs are encoded by genes previously linked to AD-related processes, others are novel
(Table 2 and Figure 1).

SLC7A2 plays a role in arginine metabolism, and its dysregulation is linked to AD
through neuroinflammation and oxidative stress [23]. Arginine transport is important for
nitric oxide synthesis, which affects vascular function and neuroinflammatory pathways.
Reduced SLC7A2 expression may worsen inflammation and neuronal damage, leading to
cognitive decline in AD.

PDE2A is crucial for regulating cAMP and cGMP homeostasis and is highly expressed
in brain regions critical for socio-cognitive behavior that are vulnerable to AD [24,25]. Over-
expression of PDE2A impairs mitochondrial function and causes extensive mitochondrial
fragmentation in neurons, which can be an early indicator of AD [25]. PDE2A inhibitors,
especially those targeting mitochondrial PDE2A2, are under NIH-funded investigation as
potential treatments to mitigate memory loss and nerve damage in AD [25].

SGTA has emerged as a protein of interest in AD due to its multifunctional role in cellu-
lar processes potentially relevant to neurodegeneration [26,27]. SGTA, a co-chaperone pro-
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tein, is implicated in AD due to its roles in apoptosis, synaptic transmission, protein home-
ostasis, and amyloid processing, which is central to AD pathology and progression [26,28].

SHROOM3 regulate axxonal guidance and cytoskeletal organization, which are critical
for maintaining neuronal integrity in AD [29]; GJB4 encodes connexion proteins involved
in gap junctions; its altered expression disrupts neuronal communication [29]; PCSK5
influences amyloid precursor protein (APP) processing, thereby affecting Aβ aggrega-
tion [30]; DYNC2H1, a dynein motor protein gene, is linked to intracellular transport and
tau pathology [31]; TEKT4, associated with cytoskeletal organization, may influence synap-
tic stability [29]; and PRKCZ modulates synaptic plasticity and memory, correlating with
cognitive decline in AD [29,31].

RIN3 impacts APP trafficking and Aβ clearance, while MMP2 and MMP11 promote
extracellular matrix remodelling and neuroinflammation and may exacerbate neuronal
damage [30]. KEAP1, on the other hand, regulates oxidative stress via NRF2 signalling,
contributing to neuronal vulnerability [32]. While IL12B drives neuroinflammation through
microglial activation [30], XBP1, a key regulator of the unfolded protein response (UPR),
worsens endoplasmic reticulum stress and neuronal death in AD [30,32]. Furthermore,
mitochondrial dysfunction is affected by ACO2, which impacts energy metabolism critical
for neuronal survival [32]. Finally, C1QBP influences immune responses and synapse
pruning, further contributing to neuroinflammation in AD [30]. Notably, our findings
highlight the multifaceted genetic mechanisms underlying AD pathology, emphasizing
the relevance of mRNA expression in these genes to shaping cognitive performance in
individuals with the disease. Validating these associations experimentally and exploring
their therapeutic potential remains critical for advancing our understanding of AD.

We used the Predictive Power Score (PPS) to evaluate the predictive relation-
ships between mRNA expression and neuropsychological variables. Unlike traditional
correlation analyses, PPS accounts for non-linear patterns and asymmetric associa-
tions [33,34]. This analysis identified mRNAs associated with cognitive performance in
AD (Table 3 and Figure 2). Key transcripts are harboured in NTM2, GABRB3, HK1, TRIM7,
SCAMP5, FOXF1, NT5C2, and CADM1, which are involved in mechanisms underlying
AD pathology.

ENST00000378165 (NMT2) was associated with the FAST screening tool (Table 3).
NMT2 encodes an enzyme crucial for cellular signalling and protein stability. NMT2
dysregulation may disrupt neuronal function and worsen proteostasis, impairing cognition,
accelerating AD progression, and impairing memory and cognition. Protein modification
pathways are increasingly implicated in neurodegenerative diseases, highlighting their
potential role in AD pathogenesis [35–37].

GABRB3 is essential for inhibitory neurotransmission. We previously reported that
the ENST00000311550 (GABRB3) was a key predictor of AD diagnosis [8]. Here, this
mRNA contributes to performance in FAST, MoCA, and Verbal Fluency (Table 3). Altered
GABRB3 expression may impair synaptic function, contributing to cognitive deficits in AD.
Dysregulated GABAergic signalling has been associated with memory impairment and
executive dysfunction, further implicating its role in AD pathology [29,37].

HK1, regulating glucose metabolism for neuronal energy, is crucial since impaired
glucose metabolism is a feature of AD; HK1 dysregulation intensifies bioenergetic deficits
and contributes to cognitive decline [35,38]. The finding that ENST00000643399 (HK1)
predicts MoCA (Table 3) is critical for understanding cognitive impairment and early
dementia signs in our population.

We identified that ENST00000274773 (TRIM7) has a significant predictive power of
several neuropsychological tests (Table 3). TRIM7 is involved in protein degradation and
immune responses. Thus, its dysregulation could amplify neuroinflammation and impair
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protein clearance pathways central to AD pathology. The role of TRIM7 in proteostasis
highlights its potential as a therapeutic target [35,39].

SCAMP5 regulates vesicular trafficking critical for synaptic function. Altered ex-
pression impacts APP processing and Aβ production [29,37]. FOXF1, on the other hand,
influences cellular differentiation and survival, and its dysregulation may impair neuronal
development and intensify neurodegeneration observed in AD brains. The fact that mRNAs
within this gene have relevant predictive power in BNT and MMSE (Table 3) highlights its
role in the neuropsychological manifestations of AD.

ENST00000343289 (NT5C2) is an essential predictor of the MoCA test (Table 3). NT5C2
encodes a cytosolic 5’-nucleotidase involved in nucleotide metabolism. Impaired function
could disrupt neuronal homeostasis and exacerbate oxidative stress in AD neurons [29,35],
which may explain its association with this screening test in our sample. In addition,
we identified ENST00000278483 (HIKESHI) may predict the results of both the Token
and Stroop tests (Table 3). HIKESHI facilitates nuclear transport of heat shock proteins
under stress conditions. Its dysregulation may impair proteostasis and protein aggregation,
contributing to cognitive decline [38,39].

ENST00000300093 (PLK1) and ENST00000540200 (POLDIP2) were significant predic-
tors of the Stroop test (Table 3). PLK1 regulates cell cycle progression and DNA damage
repair. Altered expression may contribute to neuronal apoptosis observed in AD brains,
impacting executive function [35,40]. POLDIP2 is involved in DNA replication and repair,
such that impaired function increases genomic instability and intensify neurodegeneration
observed in AD neurons, thus affecting executive function [35,40].

ENST00000375259 (SLC35D2) was identified as an essential predictor of Verbal Fluency
(Table 3). SLC35D2 is involved in glycosylation processes critical for protein folding
and stability. Thus, dysregulation of this gene could impact synaptic protein function
relevant to memory impairment [37,39]. Interestingly, we identified that ENST00000427926
(CLTCL1) may predict the number of perseverant errors in the WCST (Table 3), which
assesses cognitive flexibility and executive function. CLTCL1 regulates vesicular trafficking
essential for synaptic communication. Hence, its dysregulation affects APP processing
and contributes to Aβ accumulation observed in AD brains [29,38], which in turn impacts
important cognitive processes.

CBX7 is a chromatin modifier that regulates gene expression and may affect neu-
ronal survival mechanisms [41,42]. Altered expression of mRNAs within this gene may
disrupt these processes, leading to deficits in language and naming abilities, while associa-
tions with TMT performance could reflect involvement in executive function/processing
speed [43–45]. Changes in mRNA expression may impair these cognitive domains, con-
tributing to the observed deficits in TMT performance (Table 1).

Finally, the ENST00000331581 (CADM1) was found to predict MoCA (Table 3). Inter-
estingly, this transcript was upregulated in individuals with AD and identified as a key
predictor of AD diagnosis [8]. CADM1 promotes synaptic adhesion and connectivity [29,46].
Thus, potential alterations in expression levels may impact synaptic integrity and memory
function, both severely affected in AD pathology, and assessed by the MoCA test.

Previous studies have identified altered mRNA profiles in exosomes derived from AD
patients compared to healthy controls [16–19], often focusing on blood and cerebrospinal
fluid samples [47–49]. Our study builds upon this research by examining a cohort from
Barranquilla, Colombia, with a unique genetic background and environmental exposure
that differs from other AD communities in Colombia [50–54]. We found that specific mRNA
transcripts were significantly correlated with performance on neuropsychological tests
commonly used to assess cognitive function in AD, such as the BNT, TMT, and ROCFT
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(Figure 1 and Table 2). These correlations suggest potential mechanisms through which
these transcripts may influence cognitive function in AD.

This study benefits from a well-characterized AD cohort and controls in Colombia,
with comprehensive neuropsychological and advanced data analytics. Limitations include
small sample size, potential regional bias, and a cross-sectional design. Future research
should validate findings in larger, multi-centre, diverse cohorts using longitudinal designs
to assess temporal relationships. Functional in vitro studies could clarify the causal role of
identified mRNA transcripts in AD pathogenesis.

4. Materials and Methods
4.1. Participants

We recruited 30 participants (15 with a diagnosis of AD and 15 healthy controls) at the
Instituto Colombiano de Neuropedagogía (ICN) in Barranquilla, Colombia, and collected
data from clinical evaluations, family histories, comprehensive neurological and neuropsy-
chological clinical examinations, and structured interviews. The ICN team determined the
candidates’ eligibility based on the Montreal Cognitive Assessment (MoCA) test [55] and
the inclusion criteria described elsewhere [7]. Individuals were classified as affected by
AD if they had a Mini-Mental State Examination (MMSE) [56] between 0 and 18 points
and met the DSM-5 criteria [57]. Individuals with other neurological or major psychiatric
disorders, psychoactive substance use, excessive alcohol consumption, and inability to
complete the clinical studies were excluded [7]. Healthy controls were non-family vol-
unteers aged over 65, without suspected AD, and with an MMSE score between 19 and
29. Individuals with depression, mild cognitive impairment, dementia, other neurological
disorders, major psychiatric illnesses, psychoactive substance use, or excessive alcohol
consumption were excluded. The Universidad del Norte Ethics Committee approved this
study (Project Approval Act #188 of 23 May 2019). Demographic and clinical data are
summarized in Table 1.

4.2. Neuropsychological Assessment

We clinically characterized all participants using an exhaustive neuropsychological
evaluation protocol described elsewhere [7,8]. In addition to the MoCA and MMSE tests,
this protocol included the Boston Denomination Test [58,59], Rey–Osterrieth Complex
Figure Test (ROCFT) [60], Rey Auditory Verbal Learning Test (RAVLT) [61], Trail Making
Test (TMT) [62,63], Symbol Digit Modality Test (SDMT) [64], Stroop Color and Word
Test [65], Token Test [66], Benton’s Visual Retention Test (BVRT) [67], Clock Drawing
Test [68], Memory Scale subtest of the Wisconsin Card Testing Test (WCST) [69], Geriatric
Depression Screening Test [70], Global Deterioration Scale (GDS) [71], Barthel Functional
Index [72], and the Neuropsychiatric Inventory [73]. All participants’ age at the beginning
of the study, sex, educational level, marital status, weight, and height were also recorded
through the clinical history. In individuals with AD, the AD age of onset (ADAOO) was
also defined following previous studies [74,75]. Missing data, a common feature of clinical
studies, were handled using the imputation method implemented in the missForest [76,77]
package for R [78]. Subsequent statistical analyses were performed on the imputed dataset.

4.3. RNA Isolation and Extraction

Blood samples were collected to isolate circulating exosomes following the protocol
previously described [7]. Exosome isolation was performed using the Total Exosome
Isolation Reagent (Thermo Fisher Scientific, San Francisco, CA, USA) according to the
manufacturer’s instructions, with minor modifications standardized at the Universidad
del Norte laboratories in Barranquilla, Colombia. Isolated exxosomes were characterized
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using scanning electron microscopy. RNA extraction from the exosomes was conducted
using a laboratory-standardized acid phenol–chloroform method [7]. Extracted RNA
was resuspended in 50 µL of RNase-free water and treated with DNase I (Thermo Fisher
Scientific, San Francisco, CA, USA) according to the manufacturer’s protocol. RNA quality
was assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, San
Francisco, CA, USA), measuring optical density (OD) ratios at 260/230 and 260/280 to
ensure high-quality RNA suitable for downstream applications.

4.4. mRNA Microarray Study

A total of 30 RNA samples (15 from AD cases and 15 from healthy controls) were
analyzed. RNA quality control, labelling, and hybridization followed Agilent’s singlx10-
color microarray-based gene expression analysis protocol with minor modifications. Each
RNA sample underwent reverse transcription to complementary DNA (cDNA), followed by
amplification and transcription back to complementary RNA (cRNA). During this process,
cyanine-3 (Cy3) fluorescent dye was incorporated using a random priming method. The
labeled cRNAs were purified using the RNeasy Mini Kit (QIAGEN, Germantown, MD,
USA) to eliminate reagent residues and excess dye. Quality control metrics included a
cRNA concentration threshold of >1.65 µg and specific activity of >9 pmol Cy3/µg cRNA;
samples failing these criteria were reprocessed.

For hybridization, 1 µg of labeled cRNA was fragmented, mixed with blocking and
fragmentation buffers, and diluted with hybridization buffer. The hybridization solution
was applied to lncRNA expression microarray plates and incubated for 17 h at 65 ◦C in an
Agilent hybridization oven. Post-incubation, the arrays were washed and scanned using
an Agilent G2505C scanner (Agilent Scientific Instruments, Santa Clara, CA, USA).

We used the Arraystar Human LncRNA Arrays V5 platform, which profiles
39,317 lncRNAs and 21,174 mRNA transcripts. Probes targeting specific exons or splice
junctions ensured accurate transcript identification. Positive and negative control probes
for housekeeping genes were included for quality assurance. Quantile normalization and
data processing were performed using GeneSpring GX v12.1 software (Agilent Scientific
Instruments, Santa Clara, CA, USA). Only mRNAs flagged as present or marginal in at
least 15 of the 30 samples were selected for further analysis.

4.5. mRNA Signatures Linked to Neuropsychological Manifestations of AD

mRNAs correlated to neuropsychological manifestations of AD were identified us-
ing Generalized Linear Models (GLMs) [79]. For the ith neuropsychological variable yi

(i = 1, 2, . . ., 25), a GLM of the form yi ~ mRNAj + AD + Age + Sex + Schooling was fitted
to the data as implemented in R [78]. In this model, mRNAj corresponds to the expression
of the jth mRNA (j = 1, 2, . . ., 16,585), AD is a binary variable indicating the diagnosis
of the participant (0: control; 1: case), Age is the age of the individual at the beginning
of the study and Schooling is the years of education. The family distribution, a main
component of a GLM, was selected according to the nature of the neuropsychological
variable. Thus, neuropsychological variables representing counts were modelled using
a Poisson distribution, and those of continuous nature were modelled using a Gamma
distribution to account for potential skewness. Subsequently, the estimated regression
coefficient β̂ j associated with mRNAj, was extracted from the fitted model along with its
standard error ŜEβ̂ j

. Values of β̂ j > 0 implies that the expression of the jth mRNA is posi-

tively correlated with the neuropsychological variable; β̂ j < 0 implies that the expression
of the jth mRNA is negatively correlated; and β̂ j = 0 implies that there is no correlation
(j = 1, 2, . . ., 16,580). Under the null hypothesis, the p-value for the jth mRNA is calculated
as Pj = 2Pr

(
tn−p >

∣∣tj
∣∣), where tn−p is a t distribution with n − p = 30 − 6 = 24 degrees
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of freedom and tj =
β̂ j

ŜEβ̂j

is the test statistic. The resulting p-values were corrected for

multiple testing using Bonferroni’s method [80] and the false discovery rate (FDR) [81–83].
mRNAs corrected p-values < 5% were statistically significantly correlated with a particular
neuropsychological variable.

4.6. Predictive Power of mRNAs in AD

The Predictive Power Score (PPS) evaluates the predictive relationships between
variables, addressing limitations of traditional correlation by accommodating non-linear
patterns, categorical data, and asymmetric associations [33]. Unlike correlation and GLM-
based analyses, PPS identifies directional predictive strength. In addition, the PPS quantifies
the performance of a Decision Tree model in predicting a target variable via out-of-sample
validation, benchmarking against naive approaches. We used the PPS as implemented in
the ppsr [34] package of R to quantify the prediction ability of mRNAj (j = 1, 2, . . ., 16,585)
on the neuropsychological variable yi (i = 1, 2, 3, . . .,25).

5. Conclusions
Our study provides novel insights into the relationship between exosome-derived

mRNA signatures and neuropsychological manifestations in AD. We have identified spe-
cific mRNA transcripts that correlate with cognitive performance. These findings advance
our understanding of AD pathogenesis’ molecular mechanisms and open new avenues
for developing non-invasive diagnostic tools and targeted therapies. Further research is
needed to validate these findings and translate them into clinical applications, ultimately
improving the diagnosis, treatment, and prevention of AD.
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11. Jakubauskienė, E.; Vilys, L.; Pečiulienė, I.; Kanopka, A. The Role of Hypoxia on Alzheimer’s Diseasx10-Related APP and Tau
MRNA Formation. Gene 2021, 766, 145146. [CrossRef] [PubMed]

12. Phu Pham, L.H.; Chang, C.-F.; Tuchez, K.; Chen, Y. Assess Alzheimer’s Disease via Plasma Extracellular Vesiclx10-Derived
MRNA. medRxiv 2023. [CrossRef]

13. Noor Eddin, A.; Hamsho, K.; Adi, G.; Al-Rimawi, M.; Alfuwais, M.; Abdul Rab, S.; Alkattan, K.; Yaqinuddin, A. Cerebrospinal
Fluid MicroRNAs as Potential Biomarkers in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1210191. [CrossRef]

14. Riscado, M.; Baptista, B.; Sousa, F. New RNA-Based Breakthroughs in Alzheimer’s Disease Diagnosis and Therapeutics.
Pharmaceutics 2021, 13, 1397. [CrossRef]

15. Cheng, Y.; Zhou, X.; Zou, T.; Zhang, L.; Li, L.; Yang, C.; Ma, L. Plasma Long Non-Coding RNAs ASMTL-AS1, AP001363.1,
AC005730.3 and AL133415.1 as a Potential Biomarker for Alzheimer’s Disease. Neurol Res. 2023, 45, 804–817. [CrossRef]

16. Alhenaky, A.; Alhazmi, S.; Alamri, S.H.; Alkhatabi, H.A.; Alharthi, A.; Alsaleem, M.A.; Abdelnour, S.A.; Hassan, S.M. Exosomal
MicroRNAs in Alzheimer’s Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J. Clin. Med. 2024,
13, 6960. [CrossRef]

17. Dong, X.; Zheng, D.; Nao, J. Circulating Exosome MicroRNAs as Diagnostic Biomarkers of Dementia. Front. Aging Neurosci. 2020,
12, 580199. [CrossRef]

18. Manna, I.; de Benedittis, S.; Quattrone, A.; Maisano, D.; Iaccino, E.; Quattrone, A. Exosomal MiRNAs as Potential Diagnostic
Biomarkers in Alzheimer’s Disease. Pharmaceuticals 2020, 13, 243. [CrossRef]

19. Wang, J.; Yue, B.L.; Huang, Y.Z.; Lan, X.Y.; Liu, W.J.; Chen, H. Exosomal RNAs: Novel Potential Biomarkers for Diseases—A
Review. Int. J. Mol. Sci. 2022, 23, 2461. [CrossRef]

20. Yoshino, Y.; Yamazaki, K.; Ozaki, Y.; Sao, T.; Yoshida, T.; Mori, T.; Mori, Y.; Ochi, S.; Iga, J.I.; Ueno, S.I. INPP5D MRNA Expression
and Cognitive Decline in Japanese Alzheimer’s Disease Subjects. J. Alzheimer’s Dis. 2017, 58, 687–694. [CrossRef]

21. Tan, Y.J.; Ng, A.S.L.; Vipin, A.; Lim, J.K.W.; Chander, R.J.; Ji, F.; Qiu, Y.; Ting, S.K.S.; Hameed, S.; Lee, T.S.; et al. Higher Peripheral
TREM2 MRNA Levels Relate to Cognitive Deficits and Hippocampal Atrophy in Alzheimer’s Disease and Amnestic Mild
Cognitive Impairment. J. Alzheimer’s Dis. 2017, 58, 413–423. [CrossRef] [PubMed]

22. Sao, T.; Yoshino, Y.; Yamazaki, K.; Ozaki, Y.; Mori, Y.; Ochi, S.; Yoshida, T.; Mori, T.; Iga, J.I.; Ueno, S.I. MEF2C MRNA Expression
and Cognitive Function in Japanese Patients with Alzheimer’s Disease. Psychiatry Clin. Neurosci. 2018, 72, 160–167. [CrossRef]
[PubMed]

23. Bayraktar, A.; Lam, S.; Altay, O.; Li, X.; Yuan, M.; Zhang, C.; Arif, M.; Turkez, H.; Uhlén, M.; Shoaie, S.; et al. Revealing the
Molecular Mechanisms of Alzheimer’s Disease Based on Network Analysis. Int. J. Mol. Sci. 2021, 22, 11556. [CrossRef]

24. Delhaye, S.; Jarjat, M.; Boulksibat, A.; Sanchez, C.; Tempio, A.; Turtoi, A.; Giorgi, M.; Lacas-Gervais, S.; Baj, G.; Rovere, C.; et al.
Defects in AMPAR Trafficking and Microglia Activation Underlie Socio-Cognitive Deficits Associated to Decreased Expression of
Phosphodiesterase 2 a. Neurobiol. Dis. 2024, 191, 106393. [CrossRef]

25. Xu, Y. Role of PDE2A in Mitochondrial Dysfunction in Alzheimer’s Disease. Available online: https://reporter.nih.gov/project-
details/10832468 (accessed on 9 April 2025).

26. Kubota, S.; Doi, H.; Koyano, S.; Tanaka, K.; Komiya, H.; Katsumoto, A.; Ikeda, S.; Hashiguchi, S.; Nakamura, H.; Fukai, R.; et al.
SGTA Associates with Intracellular Aggregates in Neurodegenerative Diseases. Mol. Brain 2021, 14, 59. [CrossRef]

27. Benarroch, R.; Austin, J.M.; Ahmed, F.; Isaacson, R.L. The Roles of Cytosolic Quality Control Proteins, SGTA and the BAG6
Complex, in Disease. Adv. Protein Chem. Struct. Biol. 2019, 114, 265–313. [CrossRef]

28. Philp, L.K.; Day, T.K.; Butler, M.S.; Laven-Law, G.; Jindal, S.; Hickey, T.E.; Scher, H.I.; Butler, L.M.; Tilley, W.D. Small Glutaminx10-
Rich Tetratricopeptide Repeat-Containing Protein Alpha (SGTA) Ablation Limits Offspring Viability and Growth in Mice. Sci.
Rep. 2016, 6, 28950. [CrossRef]

29. Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F.; Mohammadi, S.; Young, J.Z.; Menon, M.; He, L.; Abdurrob, F.; Jiang, X.; et al.
Singlx10-Cell Transcriptomic Analysis of Alzheimer’s Disease. Nature 2019, 570, 332–337. [CrossRef]

30. Zhang, J.; Li, X.; Xiao, J.; Xiang, Y.; Ye, F. Analysis of Gene Expression Profiles in Alzheimer’s Disease Patients with Different
Lifespan: A Bioinformatics Study Focusing on the Disease Heterogeneity. Front. Aging Neurosci. 2023, 15, 1072184. [CrossRef]

31. Avramopoulos, D.; Szymanski, M.; Wang, R.; Bassett, S. Gene Expression Reveals Overlap between Normal Aging and
Alzheimer’s Disease Genes. Neurobiol. Aging 2011, 32, 2319.e27–2319.e34. [CrossRef]

32. Cohen, D.; Pilozzi, A.; Huang, X. Network Medicine Approach for Analysis of Alzheimer’s Disease Gene Expression Data. Int. J.
Mol. Sci. 2020, 21, 332. [CrossRef]

33. Wetschoreck, F. RIP Correlation. Introducing the Predictive Power Score. Available online: https://medium.com/data-science/
rip-correlation-introducing-the-predictive-power-score-3d90808b9598 (accessed on 1 April 2025).

34. van der Laken, P. Ppsr: Predictive Power Score. In CRAN: Contributed Packages; 2024.
35. Arzouni, N.; Matloff, W.; Zhao, L.; Ning, K.; Toga, A.W. Identification of Dysregulated Genes for Late-Onset Alzheimer’s Disease

Using Gene Expression Data in Brain. J. Alzheimers Dis. Park. 2020, 10, 498.

https://doi.org/10.1016/j.gene.2020.145146
https://www.ncbi.nlm.nih.gov/pubmed/32941952
https://doi.org/10.1101/2023.12.26.23299985
https://doi.org/10.3389/fnagi.2023.1210191
https://doi.org/10.3390/pharmaceutics13091397
https://doi.org/10.1080/01616412.2023.2203616
https://doi.org/10.3390/jcm13226960
https://doi.org/10.3389/fnagi.2020.580199
https://doi.org/10.3390/ph13090243
https://doi.org/10.3390/ijms23052461
https://doi.org/10.3233/JAD-161211
https://doi.org/10.3233/JAD-161277
https://www.ncbi.nlm.nih.gov/pubmed/28453482
https://doi.org/10.1111/pcn.12618
https://www.ncbi.nlm.nih.gov/pubmed/29112298
https://doi.org/10.3390/ijms222111556
https://doi.org/10.1016/j.nbd.2023.106393
https://reporter.nih.gov/project-details/10832468
https://reporter.nih.gov/project-details/10832468
https://doi.org/10.1186/s13041-021-00770-1
https://doi.org/10.1016/BS.APCSB.2018.11.002
https://doi.org/10.1038/srep28950
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.3389/fnagi.2023.1072184
https://doi.org/10.1016/j.neurobiolaging.2010.04.019
https://doi.org/10.3390/ijms21010332
https://medium.com/data-science/rip-correlation-introducing-the-predictive-power-score-3d90808b9598
https://medium.com/data-science/rip-correlation-introducing-the-predictive-power-score-3d90808b9598


Int. J. Mol. Sci. 2025, 26, 4897 20 of 21

36. Kocinaj, A.; Chaudhury, T.; Uddin, M.S.; Junaid, R.R.; Ramsden, D.B.; Hondhamuni, G.; Klamt, F.; Parsons, L.; Parsons, R.B.
High Expression of Nicotinamide N-Methyltransferase in Patients with Sporadic Alzheimer’s Disease. Mol. Neurobiol. 2021,
58, 1769–1781. [CrossRef]

37. Canchi, S.; Raao, B.; Masliah, D.; Rosenthal, S.B.; Sasik, R.; Fisch, K.M.; De Jager, P.L.; Bennett, D.A.; Rissman, R.A. Integrating
Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer’s Disease. Cell Rep. 2019, 28, 1103–1116.e4.
[CrossRef]

38. Abdelwahab, M.M.; Al-Karawi, K.A.; Semary, H.E. Deep Learning-Based Prediction of Alzheimer’s Disease Using Microarray
Gene Expression Data. Biomedicines 2023, 11, 3304. [CrossRef]

39. Lee, T.; Lee, H. Prediction of Alzheimer’s Disease Using Blood Gene Expression Data. Sci. Rep. 2020, 10, 3485. [CrossRef]
40. El-Gawady, A.; Makhlouf, M.A.; Tawfik, B.S.; Nassar, H. Machine Learning Framework for the Prediction of Alzheimer’s Disease

Using Gene Expression Data Based on Efficient Gene Selection. Symmetry 2022, 14, 491. [CrossRef]
41. Rybak-Wolf, A.; Plass, M. RNA Dynamics in Alzheimer’s Disease. Molecules 2021, 26, 5113. [CrossRef]
42. Zhang, Q.; Li, J.; Weng, L. Identification and Validation of Aging-Related Genes in Alzheimer’s Disease. Front. Neurosci. 2022,

16, 905722. [CrossRef]
43. Ashendorf, L.; Jefferson, A.L.; O’Connor, M.K.; Chaisson, C.; Green, R.C.; Stern, R.A. Trail Making Test Errors in Normal Aging,

Mild Cognitive Impairment, and Dementia. Arch. Clin. Neuropsychol. 2008, 23, 129–137. [CrossRef]
44. Hafiz, N.J.; Lohse, A.; Haas, R.; Reiche, S.; Sedlaczek, L.; Brandl, E.J.; Riemer, T.G. Trail Making Test Error Analysis in Subjective

Cognitive Decline, Mild Cognitive Impairment, and Alzheimer’s Dementia with and without Depression. Arch. Clin. Neuropsychol.
2023, 38, 25–36. [CrossRef] [PubMed]

45. Ferris, J.; Greeley, B.; Yeganeh, N.M.; Rinat, S.; Ramirez, J.; Black, S.; Boyd, L. Exploring Biomarkers of Processing Speed and
Executive Function: The Role of the Anterior Thalamic Radiations. Neuroimage Clin. 2022, 36, 103174. [CrossRef] [PubMed]

46. Liu, G.; Jiang, Y.; Wang, P.; Feng, R.; Jiang, N.; Chen, X.; Song, H.; Chen, Z. Cell Adhesion Molecules Contribute to Alzheimer’s
Disease: Multiple Pathway Analyses of Two Genome-Wide Association Studies. J. Neurochem. 2012, 120, 190–198. [CrossRef]

47. Tan, Y.J.; Wong, B.Y.X.; Vaidyanathan, R.; Sreejith, S.; Chia, S.Y.; Kandiah, N.; Ng, A.S.L.; Zeng, L. Altered Cerebrospinal Fluid
Exosomal MicroRNA Levels in Young-Onset Alzheimer’s Disease and Frontotemporal Dementia. J. Alzheimers Dis. Rep. 2021,
5, 805–813. [CrossRef]

48. McKeever, P.M.; Schneider, R.; Taghdiri, F.; Weichert, A.; Multani, N.; Brown, R.A.; Boxer, A.L.; Karydas, A.; Miller, B.; Robertson,
J.; et al. MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer’s Disease.
Mol. Neurobiol. 2018, 55, 8826–8841. [CrossRef]

49. Gui, Y.X.; Liu, H.; Zhang, L.S.; Lv, W.; Hu, X.Y. Altered MicroRNA Profiles in Cerebrospinal Fluid Exosome in Parkinson Disease
and Alzheimer Disease. Oncotarget 2015, 6, 37043–37053. [CrossRef]

50. Arcos-Burgos, M.; Muenke, M. Genetics of Population Isolates. Clin. Genet. 2002, 61, 233–247. [CrossRef]
51. Sepulveda-Falla, D.; Vélez, J.I.; Acosta-Baena, N.; Baena, A.; Moreno, S.; Krasemann, S.; Lopera, F.; Mastronardi, C.A.; Arcos-

Burgos, M. Genetic Modifiers of Cognitive Decline in PSEN1 E280A Alzheimer’s Disease. Alzheimer’s Dement. 2024, 20, 2873–2885.
[CrossRef]

52. Vélez, J.I.; Chandrasekharappa, S.C.; Henao, E.; Martinez, A.F.; Harper, U.; Jones, M.; Solomon, B.D.; Lopez, L.; Garcia, G.;
Aguirre-Acevedo, D.C.; et al. Pooling/Bootstrap-Based GWAS (PbGWAS) Identifies New Loci Modifying the Age of Onset in
PSEN1 p.Glu280Ala Alzheimer’s Disease. Mol. Psychiatry 2013, 18, 568–575. [CrossRef]

53. Velez, J.I.; Lopera, F.; Sepulveda-Falla, D.; Patel, H.R.; Johar, A.S.; Chuah, A.; Tobon, C.; Rivera, D.; Villegas, A.; Cai, Y.; et al.
APOE*E2 Allele Delays Age of Onset in PSEN1 E280A Alzheimer’s Disease. Mol. Psychiatry 2016, 21, 916–924. [CrossRef]

54. Acosta-Baena, N.; Sepulveda-Falla, D.; Lopera-Gómez, C.M.; Jaramillo-Elorza, M.C.; Moreno, S.; Aguirrx10-Acevedo, D.C.;
Saldarriaga, A.; Lopera, F. Prx10-Dementia Clinical Stages in Presenilin 1 E280A Familial Early-Onset Alzheimer’s Disease: A
Retrospective Cohort Study. Lancet Neurol. 2011, 10, 213–220. [CrossRef] [PubMed]

55. Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The
Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005,
53, 695–699. [CrossRef] [PubMed]

56. Folstein, M.F.; Robins, L.N.; Helzer, J.E. The Mini-Mental State Examination. Arch. Gen. Psychiatry 1983, 40, 812. [CrossRef]
57. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association

Publishing: Washington, DC, USA, 2022; ISBN 0-89042-575-2.
58. Allegri, R.F.; Villavicencio, A.F.; Taragano, F.E.; Rymberg, S.; Mangone, C.A.; Baumann, D. Spanish Boston Naming Test Norms.

Clin. Neuropsychol. 1997, 11, 416–420. [CrossRef]
59. Fernández, A.L.; Fulbright, R.L. Construct and Concurrent Validity of the Spanish Adaptation of the Boston Naming Test. Appl.

Neuropsychol. Adult 2015, 22, 355–362. [CrossRef]
60. Osterrieth, P.A. The Test of Copying a Complex Figure: A Contribution to the Study of Perception and Memory. Arch. Psychol.

1944, 30, 206–356.

https://doi.org/10.1007/s12035-020-02259-9
https://doi.org/10.1016/j.celrep.2019.06.073
https://doi.org/10.3390/biomedicines11123304
https://doi.org/10.1038/s41598-020-60595-1
https://doi.org/10.3390/sym14030491
https://doi.org/10.3390/molecules26175113
https://doi.org/10.3389/fnins.2022.905722
https://doi.org/10.1016/j.acn.2007.11.005
https://doi.org/10.1093/arclin/acac065
https://www.ncbi.nlm.nih.gov/pubmed/35901514
https://doi.org/10.1016/j.nicl.2022.103174
https://www.ncbi.nlm.nih.gov/pubmed/36067614
https://doi.org/10.1111/j.1471-4159.2011.07547.x
https://doi.org/10.3233/ADR-210311
https://doi.org/10.1007/s12035-018-1032-x
https://doi.org/10.18632/oncotarget.6158
https://doi.org/10.1034/j.1399-0004.2002.610401.x
https://doi.org/10.1002/alz.13754
https://doi.org/10.1038/mp.2012.81
https://doi.org/10.1038/mp.2015.177
https://doi.org/10.1016/S1474-4422(10)70323-9
https://www.ncbi.nlm.nih.gov/pubmed/21296022
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://www.ncbi.nlm.nih.gov/pubmed/15817019
https://doi.org/10.1001/archpsyc.1983.01790060110016
https://doi.org/10.1080/13854049708400471
https://doi.org/10.1080/23279095.2014.939178


Int. J. Mol. Sci. 2025, 26, 4897 21 of 21

61. Bean, J. Rey Auditory Verbal Learning Test, Rey AVLT. In Encyclopedia of Clinical Neuropsychology; Springer: New York, NY, USA,
2011; pp. 2174–2175.

62. Reitan, R.M. The Relation of the Trail Making Test to Organic Brain Damage. J. Consult. Psychol. 1955, 19, 393. [CrossRef]
63. Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Skills 1958, 8, 271–276.

[CrossRef]
64. Smith, A. Symbol Digit Modalities Test. Clin. Neuropsychol. 1973.
65. Golden, C.J. Stroop Color and Word Test. Stoelting Company 1978.
66. De Renzi, E.; Vignolo, L.A. The Token Test: A Sensitive Test to Detect Receptive Disturbances in Aphasics. Brain 1962, 85, 665–678.

[CrossRef] [PubMed]
67. Benton, A.L. Visuospatial Judgment: A Clinical Test. Arch. Neurol. 1978, 35, 364. [CrossRef] [PubMed]
68. Aprahamian, I.; Martinelli, J.E.; Neri, A.L.; Yassuda, M.S. The Clock Drawing Test A Review of Its Accuracy in Screening for

Dementia. Dement. Neuropsychol. 2009, 3, 74–80. [CrossRef]
69. Grant, D.A.; Berg, E. A Behavioral Analysis of Degree of Reinforcement and Ease of Shifting to New Responses in a Weigl-Type

Card-Sorting Problem. J. Exp. Psychol. 1948, 38, 404–411. [CrossRef]
70. Brink, T.L.; Yesavage, J.A.; Lum, O.; Heersema, P.H.; Adey, M.; Rose, T.L. Screening Tests for Geriatric Depression. Clin. Gerontol.

1982, 1, 37–43. [CrossRef]
71. Reisberg, B.; Ferris, S.H.; De Leon, M.J.; Crook, T. The Global Deterioration Scale for Assessment of Primary Degenerative

Dementia. Am. J. Psychiatry 1982, 139, 1136–1139.
72. Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65.
73. Cummings, J. The Neuropsychiatric Inventory: Development and Applications. J. Geriatr. Psychiatry Neurol. 2020, 33, 73–84.

[CrossRef]
74. Naj, A.C.; Jun, G.; Reitz, C.; Kunkle, B.W.; Perry, W.; Park, Y.S.; Beecham, G.W.; Rajbhandary, R.A.; Hamilton-Nelson, K.L.; Wang,

L.-S.; et al. Effects of Multiple Genetic Loci on Age at Onset in Latx10-Onset Alzheimer Disease. JAMA Neurol. 2014, 71, 1394.
[CrossRef]

75. Saad, M.; Brkanac, Z.; Wijsman, E.M. Family-based Genome Scan for Age at Onset of Latx10-onset Alzheimer’s Disease in Whole
Exome Sequencing Data. Genes. Brain Behav. 2015, 14, 607–617. [CrossRef]

76. Stekhoven, D.J.; Bühlmann, P. Missforest-Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012,
28, 112–118. [CrossRef] [PubMed]

77. Stekhoven, D.J. missForest: Nonparametric Missing Value Imputation Using Random Forest; R Package Version 1.4; 2022.
78. R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024.
79. Dunn, P.K.; Smyth, G.K. Generalized Linear Models with Examples in R; Springer: Berlin/Heidelberg, Germany, 2018.
80. Bonferroni, C.E. Teoria Statistica Delle Classi e Calcolo Delle Probabilità. Pubbl. Del R Ist. Super. Di Sci. Econ. E Commer. di Firenze

1936, 8, 3–62.
81. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.

Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [CrossRef]
82. Vélez, J.I.; Correa, J.C.; Arcos-Burgos, M. A New Method for Detecting Significant P-Values with Applications to Genetic Data.

Rev. Colomb. Estad. 2014, 37, 67–76. [CrossRef]
83. Shaffer, J.P. Multiple Hypothesis Testing. Annu. Rev. Psychol. 1995, 46, 561–584. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1037/h0044509
https://doi.org/10.2466/pms.1958.8.3.271
https://doi.org/10.1093/brain/85.4.665
https://www.ncbi.nlm.nih.gov/pubmed/14026018
https://doi.org/10.1001/archneur.1978.00500300038006
https://www.ncbi.nlm.nih.gov/pubmed/655909
https://doi.org/10.1590/S1980-57642009DN30200002
https://doi.org/10.1037/h0059831
https://doi.org/10.1300/J018v01n01_06
https://doi.org/10.1177/0891988719882102
https://doi.org/10.1001/jamaneurol.2014.1491
https://doi.org/10.1111/gbb.12250
https://doi.org/10.1093/bioinformatics/btr597
https://www.ncbi.nlm.nih.gov/pubmed/22039212
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.15446/rce.v37n1.44358
https://doi.org/10.1146/annurev.ps.46.020195.003021

	Introduction 
	Results 
	Subjects 
	mRNA Signatures Contributing to Neuropsychological Manifestations of AD 
	PPS of mRNA Signatures Across Neuropsychological Tests 

	Discussion 
	Materials and Methods 
	Participants 
	Neuropsychological Assessment 
	RNA Isolation and Extraction 
	mRNA Microarray Study 
	mRNA Signatures Linked to Neuropsychological Manifestations of AD 
	Predictive Power of mRNAs in AD 

	Conclusions 
	References

