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Simple Summary: In this study, we focused on understanding how the immune microen-
vironment contributes to chemoresistance in glioblastoma (GBM), particularly in patients
with poor response to standard chemotherapy, i.e., temozolomide. Using data from these
patients, we identified specific genes associated with treatment resistance and developed
a risk score model to classify GBM patients based on their prognosis. Stratifying patients
using this model revealed a strong correlation between poor survival outcomes and more
aggressive tumor characteristics, emphasizing its relevance in predicting aggressive tumor
behavior. Notably, patients in the high-risk group exhibited increased levels of immune
cells, a feature that may not necessarily be advantageous. While elevated immune cell
infiltration is often considered a sign of immune activation, this increased immune activity
may lead to a chronic inflammatory state, potentially resulting in lymphocyte exhaustion
and impaired immune function. Our strategy aims to leverage the genetic and immune
landscape of each individual tumor to guide treatment decisions, selecting drugs with
predicted high efficacy while avoiding exposure to highly toxic and potentially ineffective
therapies. By refining treatment selection, our research aims to improve outcomes for GBM
patients and to address a critical unmet need in cancer therapy.

Abstract: Glioblastoma (GBM) presents significant therapeutic challenges due to its inva-
sive nature and resistance to standard chemotherapy, i.e., temozolomide (TMZ). This study
aimed to identify gene signatures that predict poor TMZ response and high PD−L1/PD−1
tumor expression, and explore potential sensitivity to alternative drugs. We analyzed
The Cancer Genome Atlas (TCGA) biopsy data to identify differentially expressed genes
(DEGs) linked to these characteristics. Among 33 upregulated DEGs, 5 were significantly
correlated with overall survival. A risk score model was built using these 5 DEGs, clas-
sifying patients into low-, medium-, and high-risk groups. We assessed immune cell
infiltration, immunosuppressive mediators, and epithelial–mesenchymal transition (EMT)
markers in each group using correlation analysis, Gene Set Enrichment Analysis (GSEA),
and machine learning. The model demonstrated strong predictive power, with high-risk
patients exhibiting poorer survival and increased immune infiltration. GSEA revealed
upregulation of immune and EMT-related pathways in high-risk patients. Our analyses
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suggest that high-risk patients may exhibit limited response to PD−1 inhibitors, but could
show sensitivity to etoposide and paclitaxel. This risk score model provides a valuable
tool for guiding therapeutic decisions and identifying alternative chemotherapy options to
enable the development of personalized and cost-effective treatments for GBM patients.

Keywords: glioblastoma; immune microenvironment; differentially expressed genes; risk
score model; temozolomide resistance

1. Introduction
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in

adults, accounting for 14.2% of all primary central nervous system (CNS) tumors and 50%
of all malignant primary CNS tumors, with an annual age-adjusted incidence rate of 3.26 per
100,000 population [1]. It is characterized by its rapid growth, diffuse infiltration, and a high
recurrence rate, leading to a median survival of approximately 15 months from diagnosis [2].
Despite advancements in surgical techniques, radiotherapy, and chemotherapy, GBM
remains particularly difficult to treat. Temozolomide (TMZ), an oral alkylating agent, has
been a keystone of GBM treatment since its approval in 2005 [3]. However, nearly all
patients eventually develop resistance to TMZ and succumb to tumor progression.

Recent research highlights the crucial role of the tumor immune microenvironment
(TME) in GBM progression and treatment response [4,5]. GBM TME exhibits a distinct im-
mune profile, including a high density of immune cells and elevated expression of immune
checkpoint molecules such as programmed cell death protein-1 (PD−1) and its ligand
PD−L1 [6,7]. Although immune checkpoint inhibitors (ICIs) have revolutionized cancer
treatment [8], their efficacy in GBM remains limited [9]. One major factor contributing
to this limitation is the complex immune-suppressive microenvironment of GBM, which
hampers the efficacy of immunotherapy [10]. This gap underscores the need for reliable
biomarkers to predict patient responses to ICIs and other therapies, as well as for targeted
strategies to overcome resistance mechanisms.

Emerging evidence has also suggested potential crosstalk between DNA damage
response pathways, immunosuppressive signaling, and epithelial–mesenchymal transition
(EMT) in GBM. These interactions highlight the potential overlap between mechanisms
of resistance to TMZ and ICIs. With the advent of high-throughput genomic technologies,
numerous biomarkers associated with GBM diagnosis, prognosis, and therapeutic decision-
making have been identified. The generation of risk score signatures has become a widely
used and powerful approach for predicting patient outcomes and guiding treatment strate-
gies. Models developed for breast cancer [11,12], lung cancer [13,14], and melanoma [15,16]
have demonstrated the utility of integrating multi-dimensional data to stratify patients
based on their risk profiles. Our study builds on this foundation by developing a novel risk
score model specifically tailored for GBM. Unlike existing models, our risk score not only
incorporates general prognostic factors but also addresses specific critical conditions associ-
ated with poor prognosis in GBM, including poor response to TMZ and overexpression of
PD−1 and PD−L1 [6,17,18]. We believe that understanding dual resistance, involving both
TMZ and immune checkpoint inhibitors, may be crucial, particularly given the increasing
use of ICIs in GBM trials. By including these factors, our model aims to provide a more
accurate and practical risk assessment, helping to guide more effective and personalized
treatment strategies for GBM patients.

To develop this model, we classified GBM patients in the TCGA GBM dataset based on
three criteria: high TMZ resistance, high expression levels of PD−L1, and high expression
levels of PD−1. Thus, we developed our model by leveraging genomic and transcriptomic
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data to identify differentially expressed genes (DEGs) with prognostic and therapeutic
relevance. Shared DEGs represent potential key regulators of both TMZ resistance and
immune evasion, forming the basis for our dual resistance model. This distinction is
crucial, as our study does not categorize patients directly into a dual resistance group
but instead highlights a set of genes that may underlie resistance to both therapies. Our
analysis identified five key DEGs—COL6A3, CD163, ABCC3, COL3A1, and THBS1—that
were significantly associated with patient outcomes. By assigning weights to these DEGs,
we created a risk score model that stratifies patients into distinct risk groups, reflecting
their overall prognosis and potential response to therapy. The model effectively stratified
patients into high-, medium-, and low-risk groups; i.e., patients in the high-risk group
showed significantly worse overall survival, while those in the medium- and low-risk
groups exhibited progressively better outcomes. Further analyses revealed a significant
correlation between the risk score and key components of the immune TME, such as
immune cell infiltration, as well as oncogenic features involved in tumor progression.
Additionally, this model demonstrated strong predictive power for response to immune
checkpoint inhibitors and potential alternative therapeutic options, offering a promising
tool to guide treatment decisions and improve outcomes for patients with poor prognoses.

2. Materials and Methods
2.1. Data Collection and Processing

Clinical, genomic, and transcriptomic data for glioma patients were obtained from The
Cancer Genome Atlas (TCGA) GBM cohort. We reclassified TCGA-GBM cohort patients
based on the latest World Health Organization (WHO) classification of central nervous
system (CNS) tumors [19]. This updated classification stratifies glioma patients based on the
mutational status of the isocitrate dehydrogenase (IDH) enzyme into two categories: IDH-
mutant (mIDH) and IDH wild-type (wtIDH). Since glioblastoma (GBM) is now specifically
defined as IDH wild-type, we retained only patients with this genetic profile for our analysis
(n = 208 patients, n male patients = 128, n female patients = 80). Additionally, we included
only patients aged 30 years and older to align with the typical demographic affected by
GBM. Data from The Chinese Glioma Genome Atlas (CGGA) were used as a validation
cohort (n = 96 GBM patients; n male patients = 62; n female patients = 34).

In addition, two independent Gene Expression Omnibus (GEO) datasets were used
for further validation: GSE53733, which includes transcriptomic profiling of long-term
GBM survivors [20], and GSE43378, which includes gene-expression-based prognostic
data from GBM and mIDH glioma patients [21]. The results of the validation analy-
ses using these cohorts are presented in Supplementary Figure S5 and described in the
Supplementary Materials.

Predictive half-maximal inhibitory concentration (IC50) values for 272 drugs were
retrieved from the CancerRxTissue platform to analyze drug response for the TCGA GBM
patients [22]. Gene expression data for immune checkpoint markers, including CD274
(encoding PD−L1) and PDCD1 (encoding PD−1), as well as data on canonical targetable
signaling pathways [23], were obtained through the UCSC Xena Browser [24].

2.2. Differential Expression Analysis

GBM patients were classified into distinct groups based on three criteria: response
to temozolomide (TMZ), PD−L1 expression, and PD−1 expression. For TMZ response,
patients were stratified into ‘high resistance’ and ‘low resistance’ groups based on data
obtained from the CancerRxTissue database [22]. High-PD−L1- and high-PD−1-expression
groups were defined using median expression levels as cut-offs. Gene expression profiles
were compared between groups to identify differentially expressed genes (DEGs). DEGs
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were identified using the Xena Differential Gene Expression Analysis Pipeline and extracted
using a log fold change (logFC) threshold of 1.5 and an adjusted p-value threshold of
0.05. Upregulated genes were included to ensure comprehensive analysis (Supplementary
Material—Differential Expression Analysis).

2.3. Identification of Prognostic Genes

The prognostic significance of the identified DEGs was assessed using Cox propor-
tional hazards regression analysis. Univariate Cox regression was performed on each gene
to evaluate its association with overall survival in GBM patients. Hazard ratios (HRs),
95% confidence intervals (CIs), and p-values were computed for each gene. Genes with a
p-value < 0.05 were considered statistically significant.

Multivariate Cox regression analysis was applied to the DEGs using a stepwise selec-
tion method to identify a risk score model that independently predicted prognosis. The final
multivariate model included five genes: Collagen Type VI Alpha 3 Chain (COL6A3), Cluster
of Differentiation 163 (CD163), ATP-Binding Cassette Subfamily C Member 3 (ABCC3),
Collagen Type III Alpha 1 Chain (COL3A1), and Thrombospondin-1 (THBS1). Hazard
ratios were calculated to assess the impact of each gene on survival.

2.4. Establishment of the Risk Score Model for Prognosis and Treatment Response Prediction

Gene expression data were normalized using log2 transformation and z-score nor-
malization to ensure consistency across datasets. Based on the DEGs identified through
multivariate Cox proportional hazards regression analysis, we developed a risk score model
using the following formula:

Risk Score = Σ (βi × Ei), for i = 1 to n

In this formula, “n” represents the total number of key genes, “βi” is the regres-
sion coefficient for gene i, and “Ei” represents the expression level of gene i. The “βi”
values used in the validation CGGA datasets were the same as those derived from the
TCGA cohort.

To evaluate the prognostic and predictive value of the risk score, GBM patients were
stratified into high-risk, medium-risk, and low-risk groups based on the risk score cut-off
determined by quartile analysis. Univariate and multivariate Cox regression analyses were
performed on clinicopathological parameters and the risk score to confirm the clinical
significance of the model.

2.5. Kaplan–Meier Survival Analysis

Kaplan–Meier survival analyses were conducted to compare overall survival (OS)
between the high-, medium-, and low-risk groups. Survival curves were plotted to illustrate
the prognostic power of the gene signature.

2.6. Predictive Effect for Alternative Drugs According to the Risk Score

Data on the predicted IC50 values of 272 drugs for TCGA glioma patients were
obtained from the CancerRxTissue database [22]. TCGA GBM patients were stratified
into three risk score groups: “low”, “medium”, and “high”. The predicted IC50 values
for temozolomide (TMZ) and several other chemotherapeutic drugs were then evaluated
across these groups. To validate the predictive results, in vitro testing was performed using
the MTT assay to assess cell viability in TMZ-resistant (TMZ-r) and control-sensitive GBM
cells at fixed concentrations of the drugs.
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2.7. Clinical Response to Anti-PD1 Therapies: Model Development

Data on clinical response to anti-PD−1 therapies and associated gene expression
profiles were obtained from Zhao et al. (nivolumab response in GBM) [25] and Cloughesy
et al. (pembrolizumab response in GBM) [26]. A machine learning model was developed
to predict patient responses to anti-PD−1 inhibitors (responders vs. non-responders) using
the expression levels of five differentially expressed genes (DEGs) identified during risk
score construction: COL6A3, CD163, ABCC3, COL3A1, and THBS1.

The model was trained using LightGBM, a gradient boosting framework recognized
for its efficiency and accuracy in handling classification problems involving large datasets.
Hyperparameter optimization was performed using RandomizedSearchCV, exploring
parameters such as num_leaves, n_estimators, learning_rate, and subsample. The optimal
hyperparameters were subsequently employed to train the final LightGBM model.

The performance of the model was evaluated using standard classification metrics,
including accuracy, precision, recall, F1 score, and area under the receiver operating charac-
teristic curve (ROC-AUC). The ROC-AUC score was specifically calculated to assess the
model’s ability to distinguish responders from non-responders. Additionally, Kaplan–Meier
survival analysis was conducted to evaluate the association between predicted response
groups and overall survival in the independent validation dataset derived from TCGA
GBM data.

2.8. Drugs

Temozolomide (TMZ) was obtained from Sigma (St. Louis, MO, USA). Paclitaxel was
purchased RhenochemAG (Basel, Switzerland). Cisplatin and etoposide were obtained
from Microsules Argentina (Buenos Aires, Argentina), and nivolumab was acquired from
Laboratorio Elea Phoenix (Buenos Aires, Argentina). Dimethyl sulfoxide (DMSO) was
obtained from Ciccarelli (Córdoba, Argentina).

2.9. Cell Culture Reagents

Dulbecco’s Modified Eagle Medium (DMEM; Cat# 12100046), penicillin–streptomycin
(Cat# 15140122), and trypsin–EDTA (0.025%, Cat# 25200114) were obtained from Gibco
(Invitrogen, Carlsbad, CA, USA). Fetal bovine serum (FBS) was acquired from Natocor
(Cordoba, Argentina).

2.10. Cell Culture

Human GBM commercial cell lines (U-251 and U-87) were kindly donated by Dr
Maria G Castro (University of Michigan School of Medicine, Ann Arbor, MI, USA) and
maintained routinely in DMEM supplemented with 5% FBS and 1% penicillin–streptomycin
(PS), pH 7.4, under 5% CO2 atmosphere and 37 ◦C. Once the cells reached 80% confluence,
they were dissociated with 0.05% trypsin–EDTA and subcultured in 100 mm plastic Petri
dishes every three days.

2.11. Generation of TMZ-Resistant Cell Lines

To generate TMZ-resistant U-251 and U-87 cell lines, cells were exposed to increas-
ing concentrations of TMZ, ranging from 15 µM to 100 µM. Each treatment cycle lasted
72 h, followed by a 24 h recovery period. After completing the concentration gradient, the
cell lines were maintained by weekly 72 h treatments with 100 µM TMZ to preserve the
resistant phenotype.

2.12. MTT Cell Viability Assay

To evaluate the therapeutic effect of chemotherapeutic drugs (TMZ, etoposide, pacli-
taxel, and cisplatin) and immune checkpoint inhibitors (ICIs; nivolumab) based on our risk
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score model in control and TMZ-resistant cell lines, we performed a 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.

For the assay, each cell line was seeded at a density of 5000 cells per well in 96-well
plates. After 24 h, cells were washed and treated with 100 µL of the respective agents at
fixed concentrations (diluted in the previously described culture medium). The treatments
included temozolomide (TMZ; 15 µM), etoposide (0.5 µM), paclitaxel (10 nM), cisplatin
(5 µM), nivolumab (50 µg/mL), avelumab (50 µg/mL), and vehicle control. Following
72 h of incubation, the treatment medium was removed, and the wells were washed.
Subsequently, 110 µL of MTT solution (450 µg/mL; Molecular Probes, Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA) prepared in Krebs–Henseleit buffer was added
to each well. The plates were incubated for 4 h at 37 ◦C. After the incubation period,
the MTT–Krebs solution was carefully discarded, and 100 µL of a solution containing
0.04 M HCl in isopropanol was added to each well to dissolve the formazan precipitate.
The absorbance was then measured at 595 nm using a spectrophotometer.

The concentration of 15 µM was selected based on previous studies demonstrating
its efficacy in GBM cell lines, including those with TMZ resistance [27]. Additionally,
we included a concentration–response curve for each chemotherapeutic drug used in
Supplementary Figure S1 and described in the Supplementary Materials to further support
our concentration selection. The concentration–response curve of temozolomide (TMZ) in
U-251 control and TMZ-resistant cell lines is presented in Supplementary Figure S2 and
described in the Supplementary Materials.

2.13. Flow Cytometry

U-251 control cells and U-251 TMZ-resistant cells were harvested and prepared for
flow cytometry analysis. Cells were washed with phosphate-buffered saline (PBS) and
detached using 0.025% trypsin–EDTA. The samples were centrifuged at 1500 rpm for 5 min,
and the supernatant was discarded. After an additional wash with PBS containing 1% FBS,
cells were incubated with anti-PD−1 antibody (Cat# 3299033, BioLegend, United States)
and anti-PD−L1 antibody (Cat#393610, BioLegend, USA) at a 1:100 dilution for 30 min in
the dark. After incubation, cells were washed with PBS and centrifuged at 1500 rpm for
5 min. The cell pellets were resuspended in 200 µL of PBS and immediately analyzed using
a BD FACS Aria II flow cytometer (BD Biosciences, USA).

For each sample, 20,000 events were acquired using the FITC and APC fluorochrome
channel. Data analysis was performed using FlowJo™ v10 software (BD Biosciences).

Flow cytometry controls (negative controls, gating strategy, and compensation details)
are provided in Supplementary Figure S3 and described in the Supplementary Materials.

2.14. Statistical Analyses

Statistical analyses were performed using GraphPad Prism version 8 software (Graph-
Pad Software, version 8). Data normality was assessed using the Kolmogorov–Smirnov test
before parametric statistical tests were conducted. Continuous variables were compared us-
ing a t-test or one-way analysis of variance (ANOVA), as appropriate. Correlations between
continuous variables were evaluated using Spearman correlation analysis. Kaplan–Meier
curves were analyzed using the log-rank test. Differences were considered significant when
the p-value < 0.05.

3. Results
3.1. Identification of Differentially Expressed Genes (DEGs)

Using the TCGA dataset, we classified GBM patients based on three criteria: high TMZ
resistance, high expression levels of PD−L1, and high expression levels of PD−1 (Figure 1A,
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Table S1). We identified DEGs for each classification (Tables S2–S4), and volcano plots
were generated to visualize differential gene expression in each group (Figure 1B). A Venn
diagram analysis was conducted to identify upregulated DEGs that were overexpressed in
all three groups, revealing 33 shared DEGs (Figure 1C).

Figure 1. Identification of differentially expressed genes (DEGs) in GBM biopsies with high TMZ
resistance and high expression levels of PD−L1 and PD−1. (A) The flow chart for constructing and
verifying the 5-gene risk score signature. (B) Volcano plots showing the differentially expressed genes
(DEGs) identified under three specific conditions: lower temozolomide (TMZ) response, high PD−L1
expression, and high PD−1 expression. Genes with a p-value below 0.05 and log fold change above
1.5 and below −1.5 are marked with highlighted red and blue dots, respectively. (C) Venn diagram
displaying the overlap of DEGs across the three conditions, identifying 33 common DEGs that were
upregulated in biopsies with low TMZ response and high PD−L1 and PD−1 expression.

To assess the prognostic value of these DEGs in GBM, we conducted a univariate
Cox regression analysis for each gene, with overall survival as the endpoint. As shown in
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Table 1, 14 upregulated genes exhibited a significant association with survival (p < 0.05),
with several genes inversely correlated with patient outcomes.

Table 1. Univariate and multivariate Cox regression analyses of the correlation between 33 shared
DEGs and overall survival in TCGA.

Overall Survival
Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value

COL6A3 1.189 (1.061–1.332) 0.003 4.794 (1.796–12.797) 0.002
CD163 1.124 (0.979–1.292) 0.097 0.515 (0.295–0.901) 0.020
ABCC3 1.108 (0.995–1.234) 0.061 1.381 (1.050–1.815) 0.021

COL3A1 1.190 (1.053–1.344) 0.005 0.331 (0.115–0.950) 0.040
THBS1 1.341 (1.168–1.540) <0.001 1.620 (1.014–2.590) 0.044
GBP5 1.024 (0.0884–1.187) 0.751 0.745 (0.548–1.011) 0.059
ITK 1.162 (1.024–1.317) 0.020 1.225 (0.986–1.522) 0.066

MARCO 1.166 (1.006–1.352) 0.042 1.677 (0.936–3.003) 0.082
UBD 0.980 (0.861–1.115) 0.756 0.748 (0.526–1.064) 0.106

MMP7 1.100 (0.941–1.286) 0.232 1.224 (0.948–1.580) 0.121
IDO1 1.070 (0.899–1.275) 0.446 1.171 (0.948–1.446) 0.142

FCGR2C 1.289 (1.109–1.499) <0.001 1.479 (0.872–2.509) 0.146
PTPN22 1.176 (1.023–1.353) 0.022 0.717 (0.456–1.127) 0.149

PLA2G2A 0.989 (0.855–1.144) 0.883 0.818 (0.603–1.110) 0.196
COL1A1 1.252 (1.095–1.431) <0.001 0.516 (0.187–1.422) 0.200

LYZ 1.231 (1.058–1.434) 0.007 1.249 (0.884–1.764) 0.207
MYO1G 1.361 (1.170–1.582) <0.001 1.317 (0.786–2.206) 0.295

IL21R 1.233 (1.066–1.426) 0.004 1.277 (0.768–2.121) 0.345
TREM1 1.058 (0.948–1.180) 0.314 1.231 (0.794–1.908) 0.353
FCGR2B 1.316 (1.129–1.533) <0.001 1.276 (0.761–2.138) 0.355
GALNT5 1.126 (0.992–1.279 0.066 0.893 (0.691–1.155) 0.389

SAA2 1.027 (0.899–1.173) 0.699 1.113 (0.821–1.508) 0.491
IL2RA 1.082 (0.929–1.259) 0.309 0.834 (0.494–1.406) 0.494
IBSP 1.131 (0.972–1.317) 0.111 1.125 (0.795–1.593) 0.505

F13A1 1.251 (1.068–1.465) 0.005 0.817 (0.449–1.487) 0.507
RNASE2 1.092 (0.957–1.246) 0.188 0.885 (0.537–1.458) 0.632

FPR2 1.107 (0.954–1.284) 0.181 0.840 (0.405–1.745) 0.640
CCR2 1.181 (1.028–1.356) 0.018 1.091 (0.750–1.589) 0.648
LTF 1.003 (0.874–1.153) 0.961 0.965 (0.784–1.187) 0.733

CCL2 1.160 (1.018–1.322) 0.026 0.974 (0.655–1.449) 0.896
CCL8 1.083 (0.941–1.248) 0.267 1.016 (0.754–1.367) 0.919
AIM1 1.144 (1.009–1.296) 0.035 0.979 (0.755–1.269) 0.872
EMR1 1.189 (1.022–1.383) 0.025 0.982 (0.646–1.492) 0.931

A subsequent multivariate Cox regression analysis of these 33 DEGs identified a 5-
gene signature significantly associated with overall survival: Collagen Type VI Alpha 3
Chain (COL6A3), Cluster of Differentiation 163 (CD163), ATP-Binding Cassette Subfamily
C Member 3 (ABCC3), Collagen Type III Alpha 1 Chain (COL3A1), and Thrombospondin-1
(THBS1). Among these, COL6A3, ABCC3, and THBS1 were associated with poorer survival
(hazard ratio (HR) > 1), while CD163 and COL3A1 were associated with improved survival
(HR < 1). These five genes that encompass the signature represent important markers for
overall survival in GBM patients, indicating varying prognostic impacts of these genes.

3.2. Construction of the Risk Score Model

We next developed a risk score model based on the expression levels of the five DEGs
from Table 1 using a weighted sum method. Gene expression data from GBM patients were
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normalized and standardized. A Cox proportional hazards model was fitted to determine
the weights for each gene. Patients were stratified into low-, medium-, and high-risk
groups based on quartiles of the risk scores, revealing that patients in the predicted high-
risk group exhibited significantly shorter survival times compared to those in the groups
with predicted low and medium risk, highlighting the strong correlation between elevated
risk scores and poor patient outcomes (Figure 2A).

The Cox proportional hazards model was applied to derive gene weights, and cross-
validation confirmed the predictive performance of the model. The final risk score model
was calculated as a weighted sum of the expression levels of the five DEGs, with the weights
derived from the Cox model coefficients, and the corresponding heatmap expression of the
five key genes is shown (Figure 2B). Kaplan–Meier survival analysis demonstrated that
patients in the high-risk group had significantly poorer overall survival compared to those
in the low- and medium-risk groups (Figure 2C).

The risk score model was further validated using an independent dataset from
the Chinese Glioma Genome Atlas (CGGA) to assess its robustness and generalizability
(Figure 2D). This external validation confirmed the initial findings observed in the TCGA
dataset. Specifically, patients classified into the high-risk group in the CGGA dataset
demonstrated significantly worse overall survival compared to those in the low- and
medium-risk groups (Figure 2E).

Finally, univariate and multivariate analyses revealed that the risk score is a significant
predictor of progression-free interval (PFI) and overall survival (OS), independent of gender,
age, and Karnofsky performance score (Table 2).

Table 2. Univariate and multivariate Cox regression analyses of the correlation between risk score,
clinical features, and prognosis in TCGA.

Progression-Free Interval Overall Survival
Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Risk Score
2.071

0.004
1.877

0.017
2.531

<0.001
2.141

0.003(1.256–3.416) (1.121–3.142) (1.569–4.082) (1.298–3.530)

Gender
1.313

0.0977314
1.216

0.2467
1.128

0.48344
1.017

0.9238035(0.951–1.813) (0.873–1.694) (0.805–1.580) (0.716–1.445)

Age 1.016
0.0146262

10.123
0.0805

1.030
<0.001

1.025
0.002(1.003–1.029) (0.999–1.026) (1.015–1.046) (1.009–1.041)

Karnofsky
performance score

0.995
0.4448754

0.998
0.7798

0.982
0.009

0.990
0.1893078(0.982–1.008) (0.984–1.012) (0.969–0.996) (0.976–1.005)

3.3. Correlation with Oncogenic Features

The risk score was analyzed in relation to various oncogenic features using data from
the TCGA GBM cohort, revealing significant associations with key immune markers and
immune infiltrate gene signatures. Analyzing ESTIMATE scores, a computational method
to infer the levels of stromal and immune cell components in tumor samples based on gene
expression data, demonstrated a positive correlation between the risk score and ESTIMATE
scores, indicating that patients in the higher risk group would exhibit increased stromal
and immune cell components in the TME (Figure 3A). Furthermore, the risk score showed
a positive and statistically significant correlation with several immune markers commonly
associated with immunosuppression. Specifically, the risk score was significantly correlated
with the expression levels of PD−L1, PD−1, CTLA4, IDO1, LAG3, and TIM3 in the biopsies
of GBM patients (Figure 3B).
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Figure 2. Risk score analysis and survival outcomes in GBM patients. (A) Distribution of risk score,
survival time, and survival status of TCGA GBM patients. (B) Heatmap displaying the expression
patterns of the 5 selected genes across the different risk score groups. The color gradient reflects
the level of gene expression, with a clear distinction observed across low-, medium-, and high-
risk categories. (C) Kaplan–Meier survival curves for TCGA GBM patients, stratified by risk score
groups, showing the progression-free interval (PFI) and overall survival (OS) (p < 0.05, log-rank test).
(D) Validation of the risk score model using the CGGA GBM patient dataset. This panel includes risk
score distribution and survival status scatter plots, a heatmap of the 5 gene expression patterns across
risk score groups, and (E) Kaplan–Meier survival curves for overall survival (OS) in the validation
set, confirming the predictive power of the model (p < 0.05, log-rank test).
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Figure 3. Correlation of risk scores with immune, epithelial, and mesenchymal markers in GBM
patients. (A) Dot plot showing the relationship between ESTIMATE scores and risk scores, categorized
into low, medium, and high groups. (B) Spearman correlation analysis between risk scores and
immune marker expression. PDCD1 (PD−1), CD274 (PD−L1), CTLA4 (Cytotoxic T-Lymphocyte
Antigen 4), FOXP3 (Forkhead Box P3), IDO1 (Indoleamine 2,3-dioxygenase), LAG3 (Lymphocyte-
Activation Gene 3), HAVCR2 (Hepatitis A Virus Cellular Receptor 2). *, p < 0.05. (C) Dot plot
displaying the infiltration gene signatures across different risk score groups (low, medium, high).
*, p < 0.05 vs. low risk score group; ˆ, p < 0.05 vs. all groups, ANOVA. Spearman correlation analysis
between risk scores and (D) epithelial marker expression: CDH1 (E-cadherin), OCLN (Occludin),
DSC1 (Desmocollin 1), EPCAM (Epithelial Cell Adhesion Molecule), KRT14 (Keratin 14), TJP1 (Tight
Junction Protein 1). *, p < 0.05. (E) Mesenchymal marker expression: CDH2 (N-cadherin), ACTA2
(Alpha-Smooth Muscle Actin), FN1 (Fibronectin 1), ITGB1 (Integrin beta-1), ITGB2 (Integrin beta-2),
ITGB3 (Integrin beta-3), MMP3 (Matrix Metalloproteinase 3), MMP9 (Matrix Metalloproteinase 9),
PXN (Paxillin), S100A11 (S100 Calcium Binding Protein A11), SNAI1 (Snail Family Transcriptional
Repressor 1), SNAI2 (Snail Family Transcriptional Repressor 2), TGFBR2 (Transforming Growth
Factor Beta Receptor 2), TWIST1 (Twist Family BHLH Transcription Factor 1), TGFB1 (Transforming
Growth Factor Beta 1), VIM (Vimentin). *, p < 0.05.



Biology 2025, 14, 572 12 of 24

Analysis of immune infiltrate gene signatures [28,29] revealed distinct cell population
dynamics between risk groups. In high-risk patients, we found elevated levels of gene
signatures for CD8+ T cells, CD4+ T cells, dendritic cells, and macrophages, suggesting
augmented immune cell infiltration in the tumor, a characteristic of a more inflammatory
tumor microenvironment and potential immunosuppression. Conversely, lower levels of
Natural Killer (NK) cells were observed in the high-risk group (Figure 3C).

Additionally, a positive correlation was observed between the risk score and EMT
markers, implying that a high risk score is associated with a mesenchymal phenotype.
Significant statistical correlation was detected for epithelial markers (CDH1, OCLN, EPCAM,
KRT14, TJP1) (Figure 3D) and mesenchymal markers (CDH2, ACTA2, FN1, ITGB1, ITGB2,
ITGB3, MMP3, MMP9, PXN, S100A11, SNAI1, SNAI2, TGFBR2, TWIST1, TGFB1, TGFB2,
VIM) (Figure 3E). These findings underscore the potential of the risk score to predict the
characteristics of the tumor microenvironment and the immunological profile of the tumor.

3.4. GSEA Analysis

We conducted a Gene Set Enrichment Analysis (GSEA) to identify pathways associated
with the five-gene signature in high-risk versus low-risk patients. The analysis revealed
significant enrichments in several key biological pathways, reinforcing the robustness of the
risk score model. Notably, high risk scores were strongly associated with immune-related
pathways, including TNF-α signaling via NFκB, interferon-gamma response, and inflam-
matory response, as well as EMT hallmarks. These findings underscore the prominent
role of immune activation and inflammatory signaling, alongside EMT, in high-risk glioma
patients (Figure 4A,B). Detailed results of the differential expression analysis for risk-high
versus risk-low patients and the GSEA results are presented in the Supplementary Material
(Table S5).

3.5. Prediction of Drug Sensitivity According to the Risk Score

To identify potential drug alternatives to TMZ for GBM patients, we explored correla-
tions between the predicted ln(IC50) values of drugs from CancerRxTissue [22] and risk
score levels in biopsies from GBM patients. TCGA GBM patients were classified into “low”,
“medium”, and “high” risk score groups, and the predicted ln(IC50) values for TMZ and
several alternative chemotherapeutic drugs were evaluated.

We observed a positive correlation between predicted TMZ ln(IC50) values and
risk scores, confirming that patients with elevated risk scores are less sensitive to TMZ
(Figure 5A). We next evaluated the predicted effects of several chemotherapeutic drugs
based on risk score levels. We identified a negative correlation between the ln(IC50) values
of etoposide and paclitaxel and risk scores in GBM biopsies, indicating that these drugs
may be effective in patients who do not respond to TMZ. In contrast, we found a positive
correlation between the ln(IC50) values of cisplatin and risk scores, suggesting that this
treatment may not benefit high-risk patients (Figure 5A).

To validate these findings, we assessed the response of U-251 TMZ-resistant GBM
cells (TMZ-r) to these drugs. Consistent with our predictions, we found that TMZ and
cisplatin showed no significant effect in TMZ-r cells. In contrast, etoposide and paclitaxel
exhibited significantly stronger antitumoral effects in TMZ-r cells compared to control cells,
confirming that these drugs may provide potential alternatives for patients with high-risk
profiles and TMZ resistance.
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Figure 4. Genome Enrichment Analysis (GSEA) in high risk score group. (A) Genome Enrichment
Analysis (GSEA) (hallmark) for the high risk score group. The top 10 enriched gene sets are presented,
ranked by Normalized Enrichment Score (NES), including TNFα signaling via NFκB, epithelial–
mesenchymal transition, interferon-gamma response, and inflammatory response. (B) Representative
enriched pathways in high-risk GBM through GSEA analysis.
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Figure 5. Prediction of drug sensitivity according to the risk score. Left panels show box plots
depicting the predicted sensitivity (IC50 values) of GBM patients to chemotherapeutic drugs, namely
(A) temozolomide (TMZ), and alternative drugs like (B) paclitaxel, (C) etoposide, and (D) cisplatin,
according to their risk score. Spearman correlation, * p < 0.05. The right panels show the corresponding
in vitro testing in TMZ-resistant (TMZ-r) or control U-251 GBM cells. Cells were exposed to TMZ
(15 µM), paclitaxel (10 nM), etoposide (0.5 µM), and cisplatin (5 µM). Cell viability was measured
72 h post-treatment using the MTT assay. The viability of each type of cell is shown as the percentage
of viable cells compared to untreated cells *, p < 0.05, t-test.
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3.6. Prediction of Clinical Response to Anti-PD−1 Inhibitors

A machine learning model was developed to predict clinical responses to PD−1 in-
hibitors based on the expression levels of five significant common DEGs identified from
the weighted sum model. The analysis focused on distinguishing responders and non-
responders among GBM patients using gene expression data and clinical response from two
different clinical trials extracted from ClinicalOmics [30]. These studies included a clinical
trial assessing neoadjuvant anti-PD−1 immunotherapy with pembrolizumab (n = 35) [26]
and a retrospective series of 66 adult GBM patients treated with PD−1 inhibitors (pem-
brolizumab or nivolumab) upon recurrence [25]. The model was trained using LightGBM
with hyperparameters optimized through Randomized Search CV. The best parameters
were identified as ‘subsample’: 0.8, ‘num_leaves’: 63, ‘n_estimators’: 200, ‘learning_rate’:
0.1, ‘colsample_bytree’: 1.0, ‘boosting_type’: ‘dart’. This configuration achieved an accu-
racy score of 80% on validation data, indicating robust predictive capability. To ensure the
selection of the most effective model, a comparative analysis was conducted, evaluating
Random Forest and Support Vector Machines (SVMs) alongside LightGBM. All models
underwent similar hyperparameter optimization. The results revealed that LightGBM
outperformed both Random Forest and SVMs, demonstrating the highest AUC-ROC (0.90),
the best balance of precision and recall, and the most robust MCC and Cohen’s Kappa
scores. A detailed table of the performance metrics, including accuracy, precision, recall, F1
score, AUC-ROC, MCC, Cohen’s Kappa, and Log Loss, is provided in the Supplementary
Materials (Prediction of Clinical Response to Anti-PD−1 Inhibitors).

The model was subsequently applied to predict responses in an independent dataset
of TCGA GBM patients. Kaplan–Meier analysis of these patients validated the prediction
model, revealing that patients with predicted resistance to PD−1 inhibitor therapy had
significantly lower overall survival (Figure 6A). The ROC-AUC curve, which illustrates the
ability of the model to discriminate between responders and non-responders, showed an
area under the curve (AUC) of 0.90 (Figure 6B). Full performance metrics and additional
details can be found in the Supplementary Materials (Prediction of Clinical Response to
Anti-PD−1 Inhibitors).

Interestingly, patients with high risk scores may also exhibit limited or no response
to anti-PD−1 treatment (Figure 6C). The distribution of predicted responders to PD−1
inhibition within each risk group was as follows: low-risk group: 84.6%; medium-risk
group: 36.9%; and high-risk group: 20.7% (Figure 6D).

Considering that it has been previously shown that PD−1 can be expressed in tumor
cells [31–33], we evaluated its expression levels in both control (U-251 CTRL) and TMZ-
resistant (U-251 TMZ-r) cells (Figure 6E). Our analysis revealed that U-251 TMZ-r cells
exhibited increased levels of PD−1 compared to the control cells.

Given that PD−1 effects may not only be immune-mediated but could also exert
tumor-intrinsic effects [17], we evaluated the effect of nivolumab (anti-PD−1) in U-251 and
U-87 TMZ-r GBM cells. We found that this monoclonal antibody elicited direct antitumor
effects in these GBM cells (Figure 6F). Consistent with our machine learning predictions,
we found that nivolumab exhibited significantly reduced efficacy in both TMZ-r cells
(Figure 6F), aligning with the predicted non-responder profile of high-risk patients. In-
terestingly, when we treated these cells with an anti-PD−L1 antibody (avelumab), which
may not inhibit receptor activation, no significant effect on cell viability was observed
(Supplementary Figure S4), despite elevated PD−L1 expression in the TMZ-r cells. These
findings support the specificity of the anti-PD−1 effect and suggest that anti-PD−1 in-
hibitors may be less effective in patients with high-risk profiles and resistance to TMZ.
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Figure 6. Prediction of clinical response to anti-PD−1 inhibitors. (A) Kaplan–Meier survival curves
for predicted responders and non-responders to anti-PD−1 inhibitors in TCGA GBM patients, based
on the machine learning model developed. The curves show significantly lower overall survival
for predicted non-responders compared to responders (p < 0.05, log-rank test). (B) ROC-AUC
curve demonstrating the performance of the machine learning model in discriminating between
responders and non-responders (AUC = 0.90). (C) Distribution of risk scores between predicted
responders and non-responders to PD−1 inhibitors in TCGA GBM patients. *, p < 0.05; unpaired t-test.
(D) Distribution of PD−1 inhibition responders and non-responders within each risk score group:
low-risk group (84.6% responders, 15.4% non-responders), medium-risk group (36.9% responders,
63.1% non-responders), and high-risk group (20.7% responders, 79.2% non-responders). (E) PD−1
expression was evaluated in TMZ-sensitive and TMZ-resistant (TMZ-r) U-251 glioblastoma cell lines
using flow cytometry. The expression of PD−1 was significantly increased in the TMZ-r GBM cell
line compared to the sensitive counterpart. Data are represented as mean fluorescence intensity (MFI).
(F) U-251 and U-87 TMZ-r cells were treated with an anti-PD−1 antibody (nivolumab, 50 µg/mL).
Cell viability was measured 72 h post-treatment using the MTT assay. Statistical significance was
determined using a t-test (* p < 0.05 vs. corresponding control).
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4. Discussion
Our study introduces a novel risk score model for GBM, using genomic and tran-

scriptomic data to address critical factors associated with poor prognosis, including high
resistance to TMZ and an immunosuppressive tumor microenvironment. The genes that
compose the risk signature—COL6A3, CD163, ABCC3, COL3A1, and THBS1—are not only
linked to patient outcomes, but also reflect the complex biology of GBM. COL6A3 and
COL3A1 are involved in extracellular matrix (ECM) remodeling, which is crucial for tu-
mor progression. These genes encode proteins that are known to influence tumor cell
adhesion, migration, and invasion [34–36]. The overexpression of these collagens in GBM
highlights their role in creating a supportive environment for tumor growth and invasion.
CD163 serves as a marker for macrophage polarization, particularly in tumor-associated
macrophages (TAMs) [37]. While some studies have shown CD163 to be upregulated
and associated with poor prognosis in GBM [38,39], its role in GBM progression remains
controversial, with evidence suggesting it may also be linked to better outcomes under
certain conditions. ABCC3, a member of the ATP-binding cassette (ABC) transporter family,
is known for its role in drug resistance in many types of tumors [40–43], including GBM,
where it is overexpressed and correlates with tumor progression, worse prognosis [44,45],
and a lower response to TMZ [46]. Finally, THBS1, or Thrombospondin-1, is a multi-
functional protein that not only acts as an endogenous inhibitor of angiogenesis, but also
promotes tumor invasion, metastasis, and immune response in the tumor environment [47].
In GBM, THBS1 overexpression was found to be associated with poor overall survival [48].
Together, these DEGs control critical aspects of GBM biology, i.e., its ability to remodel its
microenvironment, evade immune surveillance, and develop treatment.

To create our risk score signature, we aimed to select genes that show strong and
statistically significant associations with overall survival, particularly in the multivariate
analysis, as this accounts for potential confounders. Interestingly, the multivariate analysis
revealed that the genes included in our risk model exhibit hazard ratios (HRs) that are above
1, i.e., COL6A3, THBS1, and ABCC3, but also genes with HRs below 1, CD163 and COL3A1,
which may exert a protective effect or a less direct role in prognosis. In fact, the role of
CD163 and COL3A1 remains controversial. The expression of CD163 is associated with
tumor-associated macrophages (TAMs), and thus, it has also been identified as a marker
of worse prognosis in GBM [37–39]. In addition, while high expression of COL3A1, along
with SNAP91, has been proposed to confer a survival advantage in GBM patients [49],
others have associated high COL3A1 expression with significantly poorer outcomes in
GBM [34]. However, these conclusions were derived solely from univariate analyses, which
assessed CD163 or COL3A1 as isolated markers of overall survival. In contrast, our findings
stem from a multivariate approach that evaluates these genes as part of a gene signature,
highlighting the importance of considering their role within a broader biological context.
Additionally, these previous studies did not classify patients based on the latest WHO
classification of CNS tumors [19], which could further influence the interpretation of the
prognostic role of CD163 and COL3A1. Including a mix of genes with HRs above and
below 1 provides a balanced and robust view of the biological behavior of the tumor.
This approach addresses a common limitation in some gene signatures [50,51], which rely
exclusively on genes with HRs greater than 1. Focusing solely on such genes assumes that
only those associated with poor outcomes are relevant, potentially overlooking protective
or beneficial factors that contribute to a more comprehensive and predictive model. This
increases the predictive power of the model and its ability to better stratify patients for
personalized treatments. Furthermore, the multivariate analysis shows that our risk score
signature is the most critical variable, among gender, age, and Karnofsky performance
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score, predicting both progression and survival outcomes in the TCGA cohort, making
these five genes potentially valuable biomarkers for further investigation.

High-risk patients exhibit an upregulation of immune gene signatures, i.e., CD4+ and
CD8+ T cells, dendritic cells (DCs), macrophages, and neutrophils, which aligns with the
fact that increased infiltration of macrophages and neutrophils is characteristic of persistent
chronic inflammation that drives pro-tumorigenic effects [52]. Interestingly, unlike in most
solid tumors, higher levels of tumor-infiltrating lymphocytes (TILs) in GBM are associated
with worse outcomes [29,53–55]. Additionally, the positive correlation of the risk score
with immune checkpoints suggests that many lymphocytes in these tumors may be in
an exhausted state. Moreover, significant enrichment was found in immune-related and
inflammatory pathways in the tumors of high-risk patients. The observed correlation
between the risk score and SNAI1/SNAI2 expression aligns with the enrichment of the
TNF-α/NFκB signaling pathway in high-risk patients, a pathway that has been impli-
cated in cancer cell migration and invasion through activation of Snail family transcription
factors, as previously demonstrated in other malignancies [56]. Furthermore, the pos-
itive NES for the hallmark interferon-gamma response in high-risk patients highlights
the association between immune activation and GBM progression. This finding is consis-
tent with recent evidence demonstrating upregulation of the canonical interferon-gamma
signaling pathway in GBM and its correlation with worse outcomes [57]. Additionally,
WNT/β-catenin signaling has emerged as a key pathway in GBM progression and ther-
apy resistance. Aberrant activation of this pathway has been linked to increased tumor
invasiveness and TMZ resistance, in part due to its role in regulating glioma stem-like cell
populations [58,59]. Furthermore, STING (stimulator of interferon genes) pathway al-
terations have been identified as a mechanism affecting TMZ efficacy in GBM. STING-
mediated immune activation has been shown to enhance the therapeutic response to TMZ,
particularly in tumors harboring PTEN mutations, further highlighting its potential as
a therapeutic target in high-risk patients [60]. Taken together, these results validate the
effectiveness of our risk score model in reflecting the biological pathways that contribute to
GBM malignancy.

While the traditional method for stratifying patients by risk score often relies on a me-
dian cut-off, we adopted a stricter approach by utilizing quartiles (25% percentile, median,
and 75% percentile) to classify patients into low-, medium-, and high-risk groups. This
comprehensive perspective allows for more accurate risk stratification and personalized
treatment strategies. Given the inherent heterogeneity of GBM and the wide variability
in response to current treatments, the use of quartile-based stratification enables a more
detailed differentiation between patients, identifying fine risk variations that may be over-
looked with a traditional median split. Those in the high-risk group, characterized by
significantly poor overall survival and higher resistance to standard therapies like TMZ, can
be identified more accurately, facilitating the early consideration of alternative or combined
therapeutic strategies.

Several studies have developed gene signatures aimed at improving risk stratification
and treatment response prediction in GBM patients. Cao et al. [61] identified four survival-
associated DEGs in GBM: OSMR, HOXC10, SCARA3, and SLC39A10, with patients in the
high-risk group showing poorer survival outcomes. Similarly, Zuo et al. [62] developed
a six-gene signature using univariate and multivariate regression models that was an
independent prognostic factor, reinforcing its potential clinical application for survival pre-
diction. Wang et al. took a different approach, focusing on angiogenesis-related genes [63].
They identified 31 key angiogenesis-DEGs and established a risk score that proved effective
in predicting prognosis and treatment response. Recently, Liang et al. [64] developed a
pyroptosis-associated gene signature that stratified patients into high- and low-risk groups,
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with the high-risk group facing worse survival outcomes. Although these examples have
made notable contributions to the field, these previous risk score signatures [61–68] were
developed based on older WHO classification systems, which did not account for isocitrate
dehydrogenase (IDH) mutation status. The 2021 WHO classification [19] fundamentally
changed the landscape of glioma diagnosis by highlighting the importance of IDH muta-
tions in differentiating between various glioma subtypes. IDH-mutant and IDH wild-type
gliomas are now understood to have significantly different molecular profiles, biological
behaviors, and clinical outcomes [29,69–71], making the integration of this marker essential
for any current risk assessment tool. By incorporating IDH mutation status classification
into our risk score model, we provide a more accurate, up-to-date framework that reflects
these advances in glioma classification.

Our model provides valuable insights into alternative therapeutic options for GBM
patients, which is crucial for overcoming resistance to TMZ. By predicting responses to a
range of therapeutic agents, our model enables a more personalized yet affordable approach
to treatment, potentially guiding clinicians in selecting the most appropriate therapies based
on the individual risk profile of the patient. The positive correlation between TMZ ln(IC50)
values and risk scores in our model confirms that patients with higher risk scores are more
resistant to TMZ. While the resistance to TMZ is expected given the use of the TMZ-resistant
GBM cell line (TMZ-r), the predictions made for other drugs are particularly important.
Our findings suggest that etoposide and paclitaxel may be valuable options for patients in
the high-risk group.

The limited efficacy of immune checkpoint inhibitors (ICIs) in GBM highlights the
need for improved biomarkers and targeted approaches. Our model aims to address
this issue by incorporating factors related to the immunosuppressive microenvironment,
which seems to hamper the effectiveness of ICIs [72]. Our model demonstrated strong
predictive power for response to immune checkpoint inhibitors, particularly anti-PD−1
therapies, suggesting that this therapy may not benefit patients in the high-risk group.
PD−1 expression levels were elevated in TMZ-resistant GBM cells. This finding agrees with
previous reports indicating that PD−1 is not confined to lymphocytes, but is also present in
GBM cells [17], as seen in other tumor types [73]. This finding raises the possibility that the
intrinsic effects of PD−1 inhibition in GBM cells themselves could be relevant, as shown in
studies of lung cancer patients [74–76]. These intrinsic effects, which may influence tumor
cell survival and proliferation, should be considered when designing therapeutic strategies.
Our findings suggest that anti-PD−1 therapies are unlikely to succeed as monotherapy for
high-risk GBM patients, but they may hold potential in combination with other treatments.
Targeting both the immune microenvironment and tumor cell pathways could offer a more
effective approach to overcoming resistance and improving outcomes.

In a disease where all patients will eventually die, exploring existing alternative drugs
is crucial, as it allows for faster clinical translation of potential treatments. By leveraging
the safety profiles of already approved drugs for other diseases, we can expedite their
testing in GBM, uncovering new therapeutic options for a disease that currently lacks
effective treatments. Repurposing drugs offers a cost-effective pathway to addressing the
urgent need for new therapies. Incorporating the risk score into this process can help to
identify patients less likely to respond to standard treatments, enabling more personalized
approaches and improving treatment outcomes by tailoring therapies to individual tumor
characteristics and disease progression.

5. Conclusions
Our study presents a risk score model based on DEGs associated with poor TMZ

response and high PD−L1/PD−1 expression in GBM. This model effectively stratifies pa-
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tients into risk groups, correlating with overall survival, immune infiltration, and treatment
response patterns. Notably, high-risk patients exhibit features linked to immunosuppres-
sion and mesenchymal transition, suggesting limited responsiveness to immune checkpoint
inhibitors, but potential sensitivity to alternative chemotherapies. While further validation
is necessary, our findings provide a framework for refining treatment strategies in GBM.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology14050572/s1: Figure S1. Concentration-response curve
of chemotherapeutics in U-251 GBM cell line. Human glioblastoma U-251 cells were treated with
increasing concentrations of temozolomide, cisplatin, etoposide, and paclitaxel. Cell viability was
assessed using the MTT assay, and IC50 values were determined by nonlinear regression analysis
using GraphPad Prism software. These IC50 values served as a reference for selecting concentrations
used in subsequent single-concentration experiments. Figure S2. Concentration-response curve
of temozolomide (TMZ) in U-251 control and TMZ-resistant cell lines. U-251 control cells and
TMZ-resistant cells were treated with increasing concentrations of TMZ (0–30 µM) for 72 h, and
cell viability was assessed using the MTT assay. The TMZ-resistant cell line exhibited a higher IC50
value compared to the control cell line, indicating increased resistance to TMZ. The IC50 values
were calculated using non-linear regression analysis in GraphPad Prism. Figure S3. Flow cytometry
analysis of PD−1 and PD−L1 expression in U-251 control and temozolomide-resistant cells. U-251
control and TMZ-resistant cells were stained with an anti-PD−1 FITC antibody. (A) Live cells were
gated based on forward scatter (FSC) and side scatter (SSC) to exclude debris and dead cells. (B) Single
cells were selected using FSC-A vs. FSC-W to eliminate doublets. (C) PD−1 (FITC) and PD−L1 (APC)
expression was analyzed in the gated population. Unstained cells and isotype-matched controls were
used to establish gating thresholds and assess non-specific binding. Data was analyzed using FlowJo
software. Figure S4. Lack of cytotoxic effect of anti-PD−L1 treatment in temozolomide-resistant GBM
cells. U-251 and U-87 TMZ-resistant (TMZ-r) cells were treated with anti-PD−L1 antibody (avelumab,
50 µg/mL), and cell viability was assessed 72 h post-treatment using the MTT assay. Despite increased
PD−L1 expression in U-251 TMZ-r cells (Figure S3), treatment with avelumab did not reduce cell
viability, indicating that antibody exposure alone does not account for the anti-PD−1–associated
viability effects observed in previous experiments. Figure S5: Validation of the risk score model using
two independent datasets from the Gene Expression Omnibus (GEO). (A) Risk score distribution
in the GSE53373 cohort, showing a clear difference between short overall survival (OS) and long
OS patients based on the risk score. (B) Risk score distribution across glioma diagnoses (GBM vs.
mIDH gliomas) and Kaplan–Meier survival curves in the GSE43378 cohort. As expected, GBM
patients exhibited higher risk scores than mIDH glioma patients. Furthermore, among GBM cases,
high-risk patients showed significantly poorer overall survival (p < 0.05, log-rank test), supporting
the prognostic relevance of the model. Table S1. Classification of TCGA GBM patients based on
temozolomide (TMZ) response and expression levels of PD-1 and PD-L1. Table S2. Differentially
expressed genes (DEGs) between TCGA GBM samples with lower and higher temozolomide (TMZ)
response. Table S3. Differentially expressed genes (DEGs) between PDCD1high and PDCD1low TCGA
GBM samples. Table S4. Differentially expressed genes (DEGs) between CD274high and CD274low

TCGA GBM samples. Table S5. Gene set enrichment analysis (GSEA) results comparing high- vs.
low-risk score TCGA GBM samples.
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