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Argentina is a middle-income country with a population 
of 46 million people based on the 2022 national census [5]. 
The healthcare system is divided into three sectors: public, 
social security, and private [6]. Health subsectors are decen-
tralized at provincial and municipal levels, where health 
planning and financing occur, leading to major fragmenta-
tion, inefficiency, and inequities [7]. Neurologists and other 
healthcare professionals may work in one or across multiple 
sectors, engaging solely in clinical practice or combining it 
with academic and research activities. Patients with ataxia 
generally have access to neurologists, particularly those 
practicing in neurology departments within hospitals, clin-
ics, or specialized medical institutions. However, there are 
currently only a few movement disorders specialists with 
dedication and expertise in ataxia, but still no interdisciplin-
ary groups of health and allied health professionals solely 
dedicated to treating patients with ataxia. Several laborato-
ries, with either privately or publicly managed services at 
universities and hospitals, perform genetic tests for ataxia, 
such as targeted gene testing, next-generation sequencing 
(NGS), or repeat expansion detection methods [8, 9]. A list 
of publicly managed genetics laboratories, along with their 
locations in the country, can be found on the Argentina.gob.

Introduction

Hereditary or genetic ataxias are the most common cause 
of chronic ataxia, with over 400 disorders, most of which 
are autosomal dominant cerebellar ataxias (ADCA), also 
commonly referred to as spinocerebellar ataxias (SCAs) 
and autosomal recessive cerebellar ataxias (ARCA) [1, 2]. 
In about 140 disorders, ataxia is a predominant and consis-
tent feature, variably accompanied by spastic paraplegia or 
movement disorders, such as dystonia, myoclonus, parkin-
sonism, or chorea [3, 4].
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Abstract
Hereditary or genetic ataxias are hundreds of disorders characterized by large phenotypic, genetic, and epidemiological 
heterogeneity. In Argentina, 35 genetic ataxias have been identified, with SCA1 (ATX-ATXN1), SCA2 (ATX-ATXN2), 
SCA3 (ATX-ATXN3), and Friedreich ataxia (ATX-FXN) as the most prevalent causes, reflecting the epidemiology of most 
Western European countries, the main origin of immigration to the country. Genetic diagnostic studies of ataxia cohorts 
in Argentina have found high rates of undiagnosed patients, ranging from 65 to 82%. Deep phenotyping, comprehensive 
genetic testing, and knowledge of the prevalence of different genetic ataxias are essential for an accurate diagnostic and 
treatment approach in clinical practice. This narrative review proposes a targeted, tiered genetic diagnostic approach for 
undiagnosed patients based on the Argentinian epidemiological and healthcare system data. Future national efforts should 
support comprehensive screening studies on ataxia cohorts, including testing for repeat expansions in RFC1 and FGF14 
genes. In addition, establishing a trial-ready patient registry for genetic ataxias, enhancing networking with international 
clinical and research initiatives, and developing specialized centers for interdisciplinary care of genetic ataxia patients are 
recommended.
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ar website [10]. Currently, there is no official list of pri-
vately managed genetics laboratories. Even though several 
genetics laboratories exist in the country, patients usually 
face barriers to being referred to genetic services or access-
ing genetic testing due to a lack of insurance coverage or 
high costs [11]. The vulnerable socioeconomic situation in 
Argentina over the past 25 years has exacerbated healthcare 
disparities and created barriers to genetic testing due to the 
continuous devaluation of local currency, foreign exchange 
restrictions, logistics challenges, and rising costs of genetic 
reagents. Possible solutions include advocating for cover-
age of genetic testing through private or non-governmental 
organizations and, in the long term, improving the coun-
try’s socio-economic conditions to make genetic testing 
more accessible to patients. Limitations to genetic testing 
and access to geneticists and genetic counsellors also are 
common problems in most Latin American countries [12]. 
Genetic testing is key to ending patients’ diagnostic ‘odys-
sey’, supporting genetic counselling, and enabling precise 
clinical actions, such as preventing comorbidities and effec-
tively managing treatable forms of ataxia [13–15].

The objective of this narrative review was to describe the 
available data on the epidemiology of hereditary ataxias in 
Argentina. We searched our institutional database for the 
occurrence of the various causes of genetic ataxia, including 
genetically confirmed patients diagnosed at our center, a ter-
tiary referral institution specializing in Neurology, receiving 
both walk-in consultations and referrals from throughout the 
country, as well as diagnosed patients referred from other 
institutions. Additionally, we conducted a literature search 
of PubMed from inception to November 2024, without lan-
guage restrictions, using the terms ‘ataxia,’ ‘spinocerebel-
lar,’ ‘SCA,’ ‘epidemiology,’ ‘Argentina,’ and ‘genetic.’ We 
also included additional publications identified in refer-
ence lists if they provided data on patients with genetically 
confirmed ataxia. The occurrence of the various causes of 
genetic ataxia was extracted from case reports, case series, 
and cohort screening studies. The genetic ataxias’ mean fre-
quencies were calculated using data from screening studies 
on ataxia cohorts.

Occurrence and Frequency of Genetic Ataxias

No studies have been conducted to determine the preva-
lence of genetic ataxias in Argentina for comparison with 
the global prevalence of SCAs (2.7/100,000), and ARCAs 
(3.3/100,000) [16]. Three cohort studies of unselected pedi-
atric or adult patients with progressive ataxia, conducted in 
Buenos Aires, the capital city of Argentina, with coverage 
extending across the entire country, were identified (Table 1) 
[17–19]. Additionally, a retrospective study of a large cohort 
of 2,948 patients with movement disorders, in which whole 

exome sequencing (WES) was performed for diagnostic 
purposes in 54 patients, was also included (Table 1) [20].

Overall, ARCAs (18.3%) were more common than 
SCAs (15.9%) when screening both inheritance patterns 
within the same study sample [17]. Friedreich ataxia (ATX-
FXN) was the most common ARCA (8.6%), followed by 
19 other disorders, each with an average frequency of 
1% or less (Fig.  1). Among SCAs, SCA2 (ATX-ATXN2) 
was the most frequent (6.6%), followed by SCA3 (ATX-
ATXN3) (4.1%), and SCA1 (ATX-ATXN1) (3.2%). Other 
reported SCAs averaged frequencies of 1% or less (Fig. 1). 
This distribution of SCAs in Argentina reflects the com-
mon SCAs reported in Western European countries [21, 
22], the primary origin of immigration to Argentina. SCA10 
(ATX-ATXN10), characterized by progressive ataxia vari-
ably associated with epilepsy, is uncommon in Argentina, in 
contrast to other Latin American countries, such as Brazil or 
Peru, where it is among the most common SCAs [23–25]. 
SCA36 (ATX-NOP56), characterized by progressive ataxia 
usually combined with nystagmus, ptosis, gaze palsy, senso-
rineural hearing impairment, and lingual fasciculations rep-
resents the most common SCA in Costa da Morte (Galicia) 
and Valencia, Spain due to a founder effect [26]. Surpris-
ingly, this genetic ataxia has been seldom reported, despite 
the large wave of immigration from Galicia to Argentina in 
the late 19th and early 20th centuries. This low diagnos-
tic rate could be due primarily to repeat expansions in the 
NOP56 gene not being included in most screening panels 
and its infrequent consideration by neurologists in the diag-
nostic approach for undiagnosed patients. Similarly, SCA38 
(ATX-ELOVL5), a slowly progressive cerebellar ataxia 
variably associated with nystagmus, hyposmia, and pes 
cavus, and treatable with docosahexaenoic acid with sev-
eral patients reported in Italy [27, 28], has been identified in 
only isolated cases. This is also surprising given the influx 
of Italian immigrants in the late 19th and early 20th cen-
turies. Other SCAs, prevalent in some European countries, 
such as SCA8 (ATX-ATXN8) and SCA17 (ATX-TBP), have 
not been identified in screening studies or described in case 
reports to date.

The distribution of SCAs in Argentina differs from that 
observed in other Latin American countries [29]. To further 
explore these regional variations, Table 2 compares the rela-
tive frequencies of the most prevalent SCAs in Argentina, 
Brazil, Peru, Cuba, Venezuela, and Mexico. The main rea-
sons for these differences include founder effects and varia-
tions in migration patterns [30], which contribute to distinct 
genetic backgrounds in some Latin American countries, 
such as Portuguese migration to Brazil, which explains the 
higher prevalence of SCA3 [29, 31]. Indigenous ancestry 
and founder effects also influence the prevalence of cer-
tain SCAs, like SCA10, which is more prevalent in Peru, 
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Mexico, and Brazil than in other regions [30, 32, 33], and 
SCA7, with a founder effect reported in Veracruz, Mexico 
[34, 35]. Also, the geographical disparities can be attributed 
to differences in healthcare access and the methodological 
heterogeneity of ataxia cohort screening studies, leading to 
varying diagnostic rates.

The diagnostic yield of genetic testing for undiagnosed 
ataxia patients varies globally due to methodological dif-
ferences across screening studies but generally averages 
between 30 and 50% [18, 36–41]. A recent systematic 
literature review on the diagnostic yield of NGS tests for 
hereditary ataxias found a median diagnostic yield of 43% 
(IQR = 9.5–100%) [42]. Higher diagnostic yields were 
obtained for episodic ataxia (68%), late-onset ataxia (54%), 
parental consanguinity (52%), and presumed ARCA (63%) 
[42]. Cohort screening studies of ataxia cohorts in Argentina 
have found high rates of undiagnosed patients, ranging from 
65 to 82% [17–19]. This may be due to the limited number 
of genes investigated or to other as-yet-unidentified genetic 
causes of ataxia, such as SCA27B (ATX-FGF14) and ATX-
RFC1, which have been identified in recent years and for 
which commercial testing is not yet universally available 
or accessible. Neurologists should be aware of SCA27B 

(ATX-FGF14), caused by GAA repeat expansions in the 
FGF14 gene in patients with progressive cerebellar ataxia 
with downbeat nystagmus, and also episodic ataxia, visual 
disturbances, vertigo, and dysarthria, often responding well 
to 4-aminopyridine [43, 44]. This disorder is an increas-
ingly common late-onset SCA, with frequencies up to 60%, 
particularly in Western Europe and Canada [43, 44]. Addi-
tionally, ATX-RFC1, causing Cerebellar Ataxia with Neu-
ropathy and Vestibular Areflexia Syndrome (CANVAS), 
was identified in 2019 [45] and can be as frequent as 16% in 
European patients with undiagnosed ataxia and up to 67% 
in patients with two or more features of CANVAS or ataxia 
with chronic cough [46].

Regarding other inheritance patterns than ARCA and 
ADCA, FMR1 premutation expansions causing Fragile 
X-associated Tremor/Ataxia Syndrome (FXTAS) were 
identified in isolated cases, but no mitochondrial causes of 
ataxia were found. The occurrence of the 35 genetic ataxias 
identified in Argentina is shown in Fig.  1. No clusters of 
any specific genetic ataxia were found in particular regions 
of Argentina or among specific ethnicities. Regarding phe-
notypic aspects, published patients and those in our insti-
tutional database exhibited typical clinical manifestations, 

Author 
(Year)

City location 
of laboratory or 
medical institution 
(region covered)

Sample 
source (n)

Genetic testing Genetic ataxias (%) Diag-
nostic 
yield 
(%)

Millar 
Vernetti 
P, et al. 
(2022) 
[20]

Buenos Aires
(all over Argentina)

Adult 
patients with 
movement 
disorders 
(54)

WES POLG (1.8%), ELOVL5 (1.8%), 
SPG7 (1.8%), ATP1A3 (1.8%), 
PMM2 (1.8%)

26%

Guar-
naschelli 
M, et al. 
(2020) 
[19]

Buenos Aires
(all over Argentina)

Adult 
patients with 
progressive 
ataxia (272)

ATXN1, 
ATXN2, 
ATXN3, CAC-
NA1A, ATXN7, 
ATXN8

ATXN2 (8.1%), ATXN3 (4.8%), 
ATXN1 (3.7%), CACNA1A 
(0.7%), ATXN7 (0.4%), ATXN8 
(0%)

18%

Perez 
Maturo 
J, et al. 
(2020) 
[17]

Buenos Aires
(all over Argentina)

Pediatric and 
adult patients 
with progres-
sive ataxia 
(334)

Multigene 
panels, WES, 
and WGS
FXN, ATXN1, 
ATXN2, 
ATXN3, CAC-
NA1A, ATXN7, 
NOP56

FXN (10.8%), ATXN2 (6.0%), 
ATXN3 (3.9%), ATXN1 (2.4%), 
PRNP (1.2%), NPC1 (1.2%), 
CACNA1A (0.9%), ATM 
(0.9%), SCN2A (0.9%), STUB1 
(0.6%), APTX (0.6%), SETX 
(0.6%), SCARB2 (0.6%), OPA1 
(0.6%), SYNE1 (0.6%), SACS 
(0.3%), TPP1 (0.3%), ATXN7 
(0.3%), AFG3L2 (0.3%), 
NOP56 (0.3%), CYP27A1 
(0.3%), KCNA2 (0.3%), 
CC2D2A (0.3%)

34%

Rodri-
guez-
Quiroga 
S, et al. 
(2015) 
[18]

Buenos Aires
(all over Argentina)

Pediatric and 
adult patients 
with progres-
sive ataxia 
(387)

WES, Sanger
FXN, ATXN1, 
ATXN2, 
ATXN3, CAC-
NA1A, ATXN7, 
ATXN8, TBP

FXN (6.4%), ATXN2 (5.7%), 
ATXN3 (3.6%), ATXN1 (3.6%), 
PRNP (1.4%), CACNA1A 
(0.7%), ATXN7 (0.7%), STUB1 
(0.7%), ATXN8 (0%), TBP (0%)

35%

Table 1  Screening studies of 
genetic ataxias in Argentina

WES: whole exome sequencing, 
WGS: whole genome sequencing
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test results are key to neurologists in clinical practice [2, 
14, 21, 53, 54]. Clinical algorithms help narrow the differ-
ential diagnoses of ataxia often combined with other clini-
cal manifestations [2, 54–58]. If the cause of the ataxia is 
presumed to be genetic, different testing approaches and 
algorithms have been proposed [51, 54, 59–61]. Based on 
the Argentinian epidemiological and healthcare system data 
provided here, we propose to follow in clinical practice the 
genetic diagnostic approach for undiagnosed patients as 

with no differences from standard phenotypes or peculiar 
features related to age at onset or disease progression.

Diagnostic Approach

The diagnostic approach of undiagnosed patients with 
ataxia is challenging considering the large phenotypic and 
genetic heterogeneity of genetic ataxias [3, 47–52]. Fac-
tors such as age of onset, regional frequency, and ancillary 

Fig. 1  Occurrence and frequency of genetic ataxias in Argentina. Red: 
SCAs; Blue: ARCAs; Yellow: X-linked inheritance. Mean frequen-
cies were calculated based on data from the cited references [17–19]. 

Circle sizes are based on the total frequency of ataxias according to 
their inheritance pattern
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(ATX-CYP27A1), Wilson disease (DYT/ATX-ATP7B), Nie-
mann-Pick disease (ATX-NPC1, ATX-NPC2), or coenzyme 
Q10 deficiency type 4 (ATX-ADCK3), and, as recently sug-
gested, Friedreich ataxia (ATX-FXN), should be prioritized 
based on clinical suspicion or ancillary test results [13, 15]. 
First-line laboratory tests that are accessible and can favor 
single-focused gene detection include serum levels of vita-
min E (TTPA), α-fetoprotein (ATM, APTX, SETX, PNKP, 

illustrated in Fig. 2. A targeted, tiered approach is preferred, 
starting genetic testing either with a single focused gene 
detection for patients with particularly distinguished phe-
notypes (e.g. FXN for a Friedreich-like phenotype, ATM for 
conjunctival telangiectasias, etc.) or with a subset of genes 
(ATXN1, ATXN2, and ATXN3) for presumed SCA. Treat-
able causes of ataxia, such as ataxia with isolated vitamin 
E deficiency (ATX-TTPA), cerebrotendinous xanthomatosis 

Table 2  Comparison of the relative frequencies of the most prevalent SCAs in Latin America
SCA type Argentina Brazil Peru Venezuela Cuba Mexico
SCA1 2.4 − 3.7% [17–19] 0 − 8.9%

[24, 95–104]
0.9% [23] 13% [105] 0.2% [106] 0% [35,107]

SCA2 5.7 − 8.1%
[17–19]

0 − 18.4%
[24, 95–104]

6.9% [23] 15.6% [105] 84.7% [106] 14.1 − 23.8%
[35,107]

SCA3 3.6 − 4.8%
[17–19]

34.1 − 92%
[24, 95–104]

1.7 − 5.3% [23,108] 13.9% [105] 2.0 − 16.2% [106,109] 0 − 5.6% [35,107]

SCA6 0.7 − 0.9%
[17–19]

0 − 5.2%
[24, 95–104]

2.6% [23] - 0% [106] 0% [35,107)

SCA7 0.3 − 0.7%
[17–19]

1.7 − 11.9%
[24, 97–104]

4.3% [23] 21.7% [105] 0.9% [106] (3.5 − 85.9%) [35,107]

SCA10 - 0.4 − 18.3%
97–104

23.5% [23] 5.2% [105] - 6.5% [35,107]

Frequencies, presented as percentages from ataxia cohort studies, include ranges when multiple values for a single gene were reported within 
a country

Fig. 2  Diagnostic approach for presumed genetic ataxias in Argentina. 
NGS: next-generation sequencing: it includes whole exome sequenc-
ing (WES), whole genome sequencing (WGS), or multigene panels of 

conventional variants; all of them should include copy number varia-
tions (CNVs) analyses. mtDNA: mitochondrial deoxyribonucleic acid, 
aCGH: array comparative genomic hybridization
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clinical scenario requires neurologists to be aware of cor-
rectly and timely diagnosing Friedreich ataxia.

In Argentina, there is an underdiagnosis of globally com-
mon genetic ataxias whose molecular underpinnings have 
been identified in recent years, such as CANVAS (ATX-
RFC1) and SCA27B (ATX-FGF14) [44, 45]. Future cohort 
screening studies are needed to determine the prevalence of 
these disorders, as well as SCA36 (ATX-NOP56), which 
is common among Spanish people from Galicia, a region 
with significant emigration to Argentina. The lack of stud-
ies on the prevalence of genetic ataxias in Argentina can be 
attributed mainly to limited research funding, the absence of 
centralized patient registries, and competing public health 
priorities. Potential strategies to address this gap include 
implementing cost-effective screening methods, such as tar-
geted gene panels and sequencing strategies tailored to the 
population’s specific needs, establishing partnerships with 
international collaborative studies and networks, and inte-
grating epidemiological data collection into existing health-
care systems. Additionally, sharing laboratory and clinical 
genomic data is essential for enhancing genetic healthcare 
[41, 72–74]. Partnering with international research plat-
forms, such as The Ataxia Global Initiative (AGI) (​h​t​t​p​​s​:​
/​​/​a​t​a​​x​i​​a​-​g​​l​o​b​a​​l​-​i​​n​i​t​​i​a​t​i​v​e​.​n​e​t​/), The Movement Disorders 
Society (MDS) Ataxia Study Group (​h​t​t​p​​s​:​/​​/​w​w​w​​.​m​​o​v​e​​m​
e​n​t​​d​i​s​​o​r​d​​e​r​s​.​o​r​g), or the Pan American Hereditary Ataxia 
Network (PAHAN) [75], is vital for advancing research 
and improving clinical care of patients with genetic ataxia. 
Additionally, developing a trial-readiness national registry 
of genetic ataxias that is compatible with existing interna-
tional multicenter registries or consortia is crucial for epi-
demiological research [76–78]. Establishing such a registry 
requires standardized clinical outcome assessments and 
systematic follow-up of patients, utilizing validated rat-
ing scales [79]. This approach will enhance natural history 
studies, collect real-world data, and promote collabora-
tion between clinicians and researchers, ultimately leading 
to improved understanding and advancements in the field 
of ataxia [80–85]. Such a comprehensive, systematic, and 
interdisciplinary approach is most effectively conducted in 
specialized Ataxia Centers or Clinics [78, 79, 86]. Compari-
sons between specialist Ataxia Centers and non-specialist 
services in terms of healthcare have found that the former 
provides better management, more personalized care, and 
higher patient satisfaction, with no differences in costs 
[87–89]. It is recommended to maintain a close relationship 
with national ataxia patient advocacy and support groups in 
Argentina, such as ATAR (https://atar.org.ar/) and ​G​P​A​T​A​
X (https://www.gpatax.org/), or the national federation of 
rare diseases (FADEPOF) (https://fadepof.org.ar/), as well 
as with social media outreach groups like AtaxiasARG (​h​
t​t​p​​s​:​/​​/​x​.​c​​o​m​​/​a​t​​a​x​i​a​​s​a​r​​g​?​l​​a​n​g​=​e​s). Identifying and ​r​e​m​o​v​i​

TDP1), cholesterol (APTX, SETX, PNKP, TDP1, MTTP, 
CYP27A1, PMM2), albumin (APTX, PNKP, TDP1, PMM2, 
WDR73), ceruloplasmin (Wilson’s disease, aceruloplasmin-
emia), and creatine kinase (ADCK3, GOSR2, SIL1, SETX). 
Additionally, certain distinctive neuroimaging patterns can 
indicate specific genetic ataxias, such as the hot cross bun 
sign observed in several SCAs [62], the middle cerebellar 
peduncle sign (ATX-FMR1) [63], bilateral hyperintensities 
of the dentate nuclei with a central hypointensity in the deep 
cerebellar nuclei related to deposition of hemosiderin and 
focal calcifications (ATX-CYP27A1) [64], superior cerebel-
lar peduncles atrophy and hyperintensity (ATX-FGF14) 
[65], and the varied combination of superior cerebellar 
vermis atrophy, posterior mid-body corpus callosum thin-
ning, bilateral hypointense pontine striations, hyperintense 
peri thalamic rims, and enlarged pons (ATX-SACS) [66]. A 
special consideration should be made for CANVAS (ATX-
RFC1), and SCA27B (ATX-FGF14), for which no epide-
miological data exists in Argentina; therefore, they should 
be investigated based on clinical suspicion or after other 
genetic causes were ruled out. First-tier testing of repeat 
expansion SCAs, including SCA6 (ATX-CACNA1A), 
SCA7 (ATX-ATXN7), SCA8 (ATX-ATXN8), SCA10 (ATX-
ATXN10), SCA12 (ATX-PPP2R2B), SCA17 (ATX-TBP), 
SCA31 (ATX-BEAN1), SCA36 (ATX-NOP56), SCA37 
(ATX-DAB1), and DRPLA (ATX-ATN1), which are more 
prevalent in other countries or regions, is not recommended 
due to cost-effectiveness unless there are strong clinical 
indications or complementary studies suggesting otherwise. 
NGS genetic testing, such as WES or multigene panels for 
conventional variants, as a first step in the diagnostic pro-
cess, is suggested for presumed ARCA or mitochondrial 
inheritance (Fig. 2).

Future Perspectives

In clinical practice, genetic testing is no longer an option 
but a standard care, considering the need to end the patient´s 
diagnostic odyssey and appropriate management of treat-
able ataxias [13, 15, 67]. Friedreich ataxia, the most com-
mon genetic ataxia worldwide, recently received Food 
and Drug Administration (FDA) and European Medicines 
Agency (EMA) approvals for a new treatment, omaveloxo-
lone, an Nrf2 activator that improves mitochondrial function 
[68, 69]. The studies on omaveloxolone in Friedreich ataxia 
demonstrate promising results as a potential treatment that 
slows disease progression as it significantly improved neu-
rological function at 48 weeks on the modified Friedreich’s 
Ataxia Rating Scale (mFARS) compared to placebo and 
showed persistent benefits in an open-label extension over 
three years, outperforming matched patients from a natu-
ral history study (FACOMS) [68, 70, 71]. This emerging 
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