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Abstract

BACKGROUND: Tau-derived cerebrospinal fluid (CSF) biomarkers correlate with

amyloid-beta (Aβ) plaques or tau tangles in Alzheimer’s disease (AD). This study

assessed the effects of long-term anti-Aβ antibodies on amyloid plaques, tau tangles,

and CSF tau species to determine the relationships between them.

METHODS: A post-hoc analysis of the DIAN-TU-001 trial (NCT01760005) examined

142 participants at risk for dominantly inherited AD randomized to solanezumab

(n= 50), gantenerumab (n= 52), or placebo (n= 40). High-resolution mass spectrome-

try quantified CSF tau species over four years.

RESULTS: Phosphorylated tau (p-tau) species (153, 181, 217, 231) increased early in

preclinical AD but were reduced with gantenerumab-mediated Aβ plaque reduction.

Nearly a decade later, MTBR-tau243 and p-tau205 increased, showing no association

with Aβ reduction, aligning with tau tangle pathology progression.
DISCUSSION: Initially changing soluble p-tau species track Aβ plaque reduction, while
ptau205 andMTBR-243 reflect tau tangle pathology, informing different pathways of

therapeutic strategies.
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Highlights

∙ p-tau217 and p-tau231 correlate with Aβ-PET and respond to Aβ-plaque lowering
therapies.

∙ Aβ immunotherapy trials support a direct link between p-tau changes and Aβ
plaques

∙ Gantenerumab reduces Aβ plaques but does not affect tauNFT-related biomarkers.

∙ Blood-based p-tau217 assays may provide a non-invasive tool to monitor Aβ
therapies.

∙ MTBR-tau243 strongly correlates with tau PET and tracks NFT pathology progres-

sion.

∙ Further studies are needed to validate tau biomarkers for tracking NFT-targeting

therapies.

1 BACKGROUND

Recent studies in dominantly inherited Alzheimer’s disease (DIAD)

and sporadic AD (sAD) suggest a sequence of changes in CSF and

blood tau-related measures that correlate with and bridge Aβ-plaque
and neurofibrillary tangle pathologies.1–5 Relatively early increased

phosphorylation of three specific sites (217, 231, and 181) correlates

with Aβ-PET positivity, followed after by increased phosphorylation of
site 205 before symptom onset; later, levels of the microtubule bind-

ing region tau 243 fragment (MTBR-tau243) and non-phosphorylated

tau increase near the time of clinical symptom onset, in parallel with

tau-PET signal increases.1,6–8

The initial rise of soluble phospho-tau, decades before the expected

onset of clinical symptoms and years before substantial neurofibrillary

tangles (NFT) are present, has generated uncertainty about the clinical

and pathological meaning of the initial phospho-tau species.9,10 Solu-

ble p-tau217, p-tau231 and p-tau181 species seem to correlate more

closely with Aβ-plaque pathology than with hyperphosphorylated

NFT pathology. Related to this, Aβ-plaque-lowering therapies appear

to reduce levels of some blood and CSF phospho-tau species.11–16

Clearly, natural history and interventional studies suggest causal links

between the increase in certain soluble phospho-taumeasures andAβ-
plaque pathology. However, a comprehensive assessment of soluble

phospho-tau levels before and after removing aggregatedAβ is needed
to validate which phospho-tau isoforms are markers of Aβ-plaque
pathology vs. tau tangle pathology.

The identification of soluble tau related biomarkers that rise in

parallel with NFT pathology supports the original notion that levels

of some forms of cerebrospinal fluid (CSF) tau reflect the release of

aggregated tau pathology, rather than a response to established Aβ-
plaque pathology. These forms of tau include p-tau205, and fragments

that include the non-phosphorylated N-terminal domain and the cen-

tral proline-rich domain (known as total tau, t-tau), or the microtubule

binding repeat (MTBR)domain.6,8,17,18 Compared tomostphospho-tau

species, p-tau205, t-tau, and MTBR-tau243 appear to have stronger

correlationswith clinical symptoms, cerebral atrophy, and tau-PETand,

thus, may serve as a surrogate measure of clinical symptomatology.

Yet, the recent studies demonstrating a decrease in Aβ-plaque pathol-
ogy have not shown clear evidence of an influence on NFT burden by

tau PET, nor evaluated these recently identified soluble tau biomark-

ers including relative abundance of p-tau measured as ptau/tau ratios

(%p-tau). Interventional studies are needed to assess the relationships

between soluble tau-related biomarkers, Aβ-plaques, and NFTs.
Previously, we have shown that gantenerumab (an Aβ-plaque tar-

geting therapy), but not solanezumab (a Aβ-monomer targeted ther-

apy) substantially reduced Aβ-plaques in DIAD.15 In this study, we

explored the effect of both drugs on the longitudinal rate of change of

multiple CSF soluble tau-related biomarkers and tau PET in individu-

als with DIAD in the Dominantly Inherited Alzheimer Network Trials

Unit (DIAN-TU) 001 study. Based on our and other trial results,19 we

hypothesized that Aβ-plaque reduction would associate with a selec-

tive normalization of initial-changing soluble tau biomarkers; whereas,

consistentwith the absence of a change in tau PET signal, later changing

soluble tau biomarkers would be unaffected by Aβ-plaque reduction.

2 METHODS

2.1 Study participants

Eligibility criteria for theDIAN-TU-001 includedparticipants at-risk for

or known to have aDIADmutation,whowere between15 years before

to 10 years after the expected age of symptom onset,20 and had a

global Clinical Dementia Rating® (CDR®) of 0 (cognitively normal), 0.5
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RESEARCH INCONTEXT

1. Systematic review: The measurement of multiple tau-

related biomarkers in observational cohorts of at-risk or

symptomatic Alzheimer disease has suggested that sol-

uble tau changes in the cerebrospinal fluid may reflect

both Aβ-plaque and NFT tangle pathology. However, no

studies have comprehensively assessed the effect of Aβ
plaque reduction on ‘early’ (e.g. p-tau217) and ‘late’ (e.g.

MTBR-tau243 and tau PET) tau biomarkers.

2. Interpretation: Aβ-plaque, but not soluble Aβ, reduction
was associatedwith a distinct reduction ofmultiple ‘early’

tau biomarkers without a change in ‘late’ tau biomark-

ers. These findings support recent diagnostic criteria for

Alzheimer’s disease classifying early and later changes

in tau-related biomarkers and suggests the use of spe-

cific phospho-tau biomarkers to monitor the response to

Aβ-plaque lowering therapies.
3. Future directions: A comparative analyses of recently

approvedAβ immunotherapieson tau-relatedbiomarkers

is needed to better understand if these soluble measures

can be used tomonitor long-term treatment effects.

(very mild dementia), or 1 (mild dementia).21 DIAD mutation carriers

were randomized 3:1 to active drug (gantenerumab or solanezumab)

or placebo with a minimization procedure.22 Study personnel, spon-

sors, andparticipantswereblinded to treatment assignment. TheDIAN

Observational study (DIAN-OBS) participants included individuals of

age 18or olderwhowere at-risk for or known to have aDIADmutation

and who had provided CSF. The DIAN-OBS and DIAN-TU studies have

similar protocols, including cognitive, clinical, imaging and biomarker

measures and both studies excluded participants with the APP E693Q

(Dutch) mutation. Full details for theDIAN-TU-001 andDIAN-OBS are

available in previous publications.15,23,24 The studies were conducted

in accordance with the Declaration of Helsinki (version 7) and the

InternationalConferenceonHarmonization andGoodClinical Practice

guidelines andhadethics committeeapproval at eachparticipating site.

Participants provided written informed consent.

2.2 Study design

DIAN-TU-001 was conducted at 25 sites in 7 countries from Decem-

ber 2012 through November 2019. The trial registration number

is NCT01760005. Investigators are listed on the DIAN-TU web-

page https://dian.wustl.edu/for-investigators/diantu-investigator-

resources/dian-tu-study-team/. Biomarkers were assessed at base-

line and in years 1, 2, and 4. Target drug doses were increased

approximately halfway through the study as previously detailed.15

Gantenerumab was increased from 225 mg (subcutaneously, every

4weeks) to 1200mg in2016. Solanezumabwas increased from400mg

(intravenously, every 4 weeks) to 1600 mg in 2017. The current CSF

study includes only those participants who had CSF and brain imaging

measured at all time points; the biomarker assessment between

years 2 and 4 represents the time during which the drug doses were

increased. This is an exploratory, post-hoc analysis that was not part

of the original clinical trial statistical analysis plan. Therefore, some

analyses are underpowered, and the results should be interpreted as

descriptive in nature.

For the DIAN-OBS participants (n = 247), the study was conducted

at 22 sites and data underwent yearly quality-control assessments for

irregular results and missing data from January 26, 2009 to June 30,

2017.

2.2.1 Cerebrospinal Fluid Analyses

For both DIAN-TU-001 and DIAN-OBS, CSF was collected via stan-

dard lumbar puncture procedures using an atraumatic Sprotte spinal

needle (22 Ga), typically in the morning and in fasting state. DIAN-

OBS CSF samples were centrifuged immediately upon collection and

flash frozen, whereas DIAN-TU-001 samples were flash frozen imme-

diately upon collection and shipped to the DIAN Biomarker Core. For

theCSF tau-related analyses, each sample underwent two freeze-thaw

cycles. Full details of the CSF preparation and LC-MS/MS process-

ing have been previously outlined in detail5,6 and were consistent

for both DIAN-OBS and DIAN-TU-001. Importantly, except for non-

phosphorylated (total tau) and the microtubule binding region 243

(MTBR-tau243) concentrations, all phospho-tau measures represent

the phosphorylated to unphosphorylated (pT## / T##) ratios for each

modified residue or expressed as percentage (%phospho-tau).

2.2.2 Tau and Amyloid PET Imaging

Full details on the imaging protocols for 11C-Pittsburgh Compound

B (PiB) PET and 18F-AV-1451 (flortaucipir) PET have been provided

previously.25,26 Region of interest PET datawere converted to regional

standard uptake value ratios (SUVRs) — 47-60 minute window for

PiB PET and 80-100 for flortaucipir — using the cerebellar grey as a

reference and were partial volume corrected using a regional spread

function for each region, which when combined form a geometric

transfer matrix.27,28 Of note, the tau PET results are derived from

DIAN-TU study data only, due to limited longitudinal tau PET in the

DIAN observational cohort.

2.3 Study outcomes

The primary outcome of the DIAN-TU-001 study was the DIAN mul-

tivariate cognitive endpoint1. For this exploratory study, the primary

outcomeswere the differences in the solubleCSF tau-related biomark-

ers in the treatment groups relative to the shared placebo group at
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the end of year 4. The two active treatment arms were compared to

placebo but were not directly compared to each other.

2.3.1 Statistical Analyses

DIANObservational Data

For each marker, the standardized mean value for mutation carriers

(MCs)were estimated at each estimated years to symptomonset (EYO)

point using linear mixed effects (LME) models using only baseline data,

then plotted over EYO. These values were transformed into a value

scaled from 0-100 (see below) to better project the magnitude of

change across the disease spectrum. The LME models included the fix

effects of mutation status (MC vs. non-carrier [NC]) and baseline EYO.

All possible two-way interaction terms along with second and third

order of EYO terms were examined to reach a final model that fit the

datawell for eachmarker. A randomeffectwas also included to account

for the family affiliation.

To evaluate the biomarker abnormality rate across EYO, percentage

of abnormality for each biomarker was calculated by every five-year

EYO bin (i.e. -15 to -11, etc.). The 95th percentile of the NC group was

set as abnormality cutoff for allmeasurements except forCSFAβ42/40
where 5th percentile (lower ratio is more advanced disease) was used

as the cutoff for abnormality.

DIAN-TU Data

For the trial data, which had protocol specific biomarker collec-

tion intervals, a mixed model for repeated measures (MMRM) was

employed to estimate the change from baseline within each group and

to compare differences between these changes. The MMRM analysis

incorporated the treatment group (including either treatment group

and the shared placebo group), baseline values, post-baseline visit

times as categorical values, and the interaction between visit times and

treatment as fixed effects; and employed an unstructured covariance

matrix. We have recently developed a method to standardize differ-

ent biomarkers to a scale of 0-100, calledCentiMarker29 (similar to the

Centiloid scale,30 using the 95th percentile of the greatest abnormal

values for all MCs and the mean from the NCs. This method provides

a way of quantifying the change for each biomarker in a similar scale

to better interpret themagnitude of drug effects on each biomarker. To

evaluate the correlation between amyloid PiB-PETor tauPET and each

soluble biomarker, Spearman correlations were computed based on

the individual annual rate of change estimated using the least squares

method. Thismethodwas chosendue to the relatively small sample size

of the trial as opposed to a bivariate mixedmodel which could bemore

subject tomodel convergence issues.

To visualize the drug effect of gantenerumab on the normal dis-

ease progression pattern of the soluble tau biomarkers and amyloid

and neurodegeneration, LOESS curves were generated over cognition-

adjusted EYO for gantenerumab-treated MCs, a combined MC group

of placebo and solanezumab and NCs. To more intuitively compare

disease progression patterns across different biomarkers, each was

standardized to a scale of 0-100, called CentiMarker29 using the 95th

percentile of the greatest abnormal values for all MCs and the mean

from the NCs. EYO was adjusted using the baseline values of Interna-

tional Shopping List Test-Delayed Recall andDigit Symbol Substitution

Test, employing a simplified disease progressionmodel based on cross-

sectional data.31 This adjusted EYO31 can more accurately delineate

the disease progression pattern compared to an unadjusted EYO (cal-

culated using only mutation and familial information,32 and is referred

to as the cognition adjusted EYO. Because the adjustment utilized only

baseline values, inclusion of two endpoints in the model was neces-

sary for identifiability. Although any two endpoints canmeet themodel

requirement, these ones were selected due to their greater sensitivity

to disease severity and amyloid levels.33

3 RESULTS

Participant demographics and values of the key biomarker measure-

ments are listed in Table 1.

3.1 Temporal ordering of soluble CSF tau
biomarkers

Our previous study from the natural history population5 suggested

an ordering of changes in phospho-tau and total tau levels in

the progression of disease including pT217/T217, pT181/T181, and

pT205/T205. Here we expand on the order and magnitude of changes

by including the pT153/T153, pT231/T231, and MTBR-tau243 in

the DIAN-OBS cohort, Figure 1A. The figure highlights a near

decade difference between the time that amyloid PET, pT153/T153,

pT231/T231, pT217/T217 and pT181/T181 rise substantially in MCs,

and the time when CSF pT205/T205, total tau, and MTBR-tau243

increase. Further, using 5-year time bins to track stage of disease,

we assessed the proportion of MCs who had abnormal levels for

each CSF tau-related biomarker, amyloid PET, Figure 1B. In align-

ment with the temporal pattern identified in Figure 1A, we found

that there were consistencies between the proportion of MCs who

had abnormal levels of specific phospho-tau ratios and amyloid PET,

which were sequentially followed by increases in the proportion of

MCs with abnormal levels of pT205/T205, MTBR-tau243 and CSF

tau as the age of symptom onset approached; specifically, 50% of

MCs had abnormal pT217/T217 levels between 20 to 15 years

before symptom onset (EYO -20 to -15), whereas 50% of MCs had

abnormal pT205/T205 and MTBR-tau243 between 10 to 5 years

before symptom onset (EYO -10 to -5), a 10 year difference. Sub-

sequently, we classify these groups of soluble tau biomarkers into

amyloid-related CSF tau biomarkers versus tau tangle-related CSF tau

biomarkers.

Based on these findings that indicate a temporal ordering of sol-

uble tau biomarkers and distinct associations with Aβ-PET, we then

explored the effect of amyloid targeting therapies on these soluble

tau measures to better determine relationships of soluble CSF tau

biomarkers with amyloid plaque andNFT pathologies.

 15525279, 2025, 9, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.70689 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MCDADE ET AL. 5 of 14

TABLE 1 Clinical Dementia Rating and biomarker values at trial baseline by randomization.

Active gantenerumab

n= 52

Active solanezumab

n= 50

Shared placebo

n= 40

CDR 0 (n (%)) 31 (60) 30 (60) 22 (55)

CDR> 0 (n (%)) 21 (40) 20 (40) 18 (45)

pT153/T153 0.16 ± 0.08 0.18 ± 0.08 0.17 ± 0.08

pT181/T181 35.92 ± 8.83 38.23 ± 10.41 36.43 ± 9.25

pT205/T205 1.16 ± 0.52 1.24 ± 0.53 1.23 ± 0.60

pT217/T217 12.56 ± 7.03 14.25 ± 8.04 12.90 ± 6.93

pT231/T231 19.15 ± 12.22 21.89 ± 11.67 19.63 ± 8.81

MTBR-tau243 ng/ml 0.73 ± 0.79 0.66 ± 0.58 0.57 ± 0.46

PiB-PET Composite (Centiloid) 64.8 ± 51.9 65.2 ± 53.6 64.3 ± 50.1

Tau PET SUVR Summary Region 1.63 ± 0.60 2.64 ± 1.36 2.04 ± 1.12

Hippocampal Volume (mm3) 7933 ± 1154 8238 ± 1342 8026 ± 1390

Abbreviations: CDR, Clinical Dementia Rating;MTBR,Microtubule binding region; PiB, Pittsburgh compound B; SUVR, Standard Uptake Volume Ratio.

F IGURE 1 Soluble tau biomarkers track disease progression in Dominantly inherited Alzheimer disease natural history cohort. (A) mean
cross-sectional standardized values (y-axis) for soluble tau-related biomarkers (in CentiMarkers), clinical dementia rating sum of boxes (CDR-SB)
and amyloid PET forMCs across the estimated year of onset (EYO) (x-axis). (B) percentage (y-axis) ofMCswith abnormal levels (greater than 2 SD
abovemean of NC) of soluble tau-related biomarkers, CDR-SB and amyloid PET across the EYO (x-axis) in 5-year intervals.

3.2 Effects of Aβ-PET change on soluble CSF tau
related biomarkers

Becausewepreviously demonstrated a substantial Aβ-plaque lowering
effect byPETof gantenerumab,15 we first assessed the changes in each

of the CSF tau biomarkers in the gantenerumab treated group, com-

pared to placebo-treated MCs, using a MMRM analysis at each time-

point of CSF collection, Figure 2. Following gantenerumab treatment,

phospho-tau measures from the amyloid-related CSF tau biomarkers

had themost consistent reductionwithAβ-PET. Tau tangle-relatedCSF
tau biomarkers were unchanged despite the significant reduction of

Aβ-PET. Solanezumab treatment was not associated with differences

in PiB PET levels or any of the CSF tau related biomarkers relative to

the placebo group, apart from a higher level of MTBR-tau243 in the

solanezumab group compared to placebo.

We next assessed the association between the change in Aβ-PET
and the change in each of the CSF tau biomarkers by assessing the

correlations between the annual rates of change using the combined

data from all three groups (Figure 3). Consistent with the tempo-

ral association of Aβ-PET increase and the amyloid related CSF tau

biomarkers, we found that the rate of change of the amyloid-related

CSF tau biomarkers correlated with changes in Aβ-PET (correlation

range –pT217/T217 ρ = 0.50, [95% CI 0.30 – 0.66], p < 0.0001 to

pT231/T231 ρ = 0.35, [95% CI 0.13 – 0.54], p < 0.0027); whereas the

tau tangle-related CSF tau biomarkers rates of change had no associ-

ation with change in Aβ-PET (correlation range pT205/T205 ρ = 0.14,

[95% CI -0.10 – 0.36], p < 0.2531 to MTBR-tau243 ρ = 0.15, [95% CI

-0/09 – 0.38], p< 0.2018).

Together, these findings show that the pathological accumulation

and treatment-associated reduction of Aβ-plaques with the levels of
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F IGURE 2 Gantenerumab and solanezumab treatment has distinct effects on amyloid PET and tau biomarkers. Estimatedmean change in
CentiMarkers from baselinewith 95% confidence intervals for the treatment (gantenerumab (blue), solanezumab (red)) and shared placebo groups
usingMMRManalyses. (A, B) Estimatedmean change from baseline in amyloid (PiB) PET and Tau-PET for gantenerumab. (C, D) Estimatedmean
change from baseline in %phospho-tau153. (E, F) Estimatedmean change from baseline in %phospho-tau181. (G, H) Estimatedmean change from
baseline in %phospho-tau205. (I, J) Estimatedmean change from baseline in %phospho-tau217. (K, L) Estimatedmean change from baseline in
%phospho-tau231. (M, N) Estimatedmean change from baseline inMTBR-tau243. (O, P) Estimatedmean change from baseline in total tau
(Lumipulse immunoassay). Sample sizes at yearly assessments are listed below the x axes. Each drug groupwas compared to the shared placebo
group independently using theMMRMmodel. *p< 0.05, **p< 0.01, ***p< 0.001.

phosphorylation at specific sites in soluble CSF tau are linked and sug-

gest that pT153/T153, pT231/T231, pT217/T217 and pT181/T181

ratios may serve as surrogate markers of Aβ-plaque pathology in the

context of AD amyloid plaque removal.

3.3 Change in tau PET and soluble CSF tau
biomarkers

Recent biomarker studies of tau PET and soluble tau species in sAD

suggest that pT205/T205 and MTBR-tau243 are more closely corre-

lated with NFT burden than pT217/T217 and other amyloid-related

CSF tau biomarkers.1,6,8,17,18 Therefore, we assessed the relationship

between longitudinal rates of change for each of the soluble tau-

biomarkers and tau PET (Figure 3). We found the strongest positive

correlations with tau PET change were with the change in the tau

tangle-related CSF tau biomarkers: CSF MTBR-tau243 (ρ = 0.48, CI

[0.28, 0.64] p < 0.0001), followed by pT205/T205 (ρ = 0.22, CI [-

0.02, 0.43] p = 0.067). For the amyloid-related CSF tau biomarkers,

we found no associations or a negative correlation which was great-

est for pT181/T181 (ρ = -0.40, CI [-0.58, -0.19] p = 0.0004) and

pT231/T231 (ρ = -0.25, CI [-0.46, -0.02] p = 0.0314), indicating reduc-

tion of amyloid-related CSF tau biomarkers by gantenerumab despite

tau PET increases at later stages. These results further support the

independence of tau tangle-related CSF tau biomarkers, particularly

MTBR-tau243, with amyloid plaque amounts and removal, while hav-
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F IGURE 3 Change in CSF tau biomarkers and PETmeasures of tau and amyloid-beta show distinct relationships. Correlation (ρ) between the
estimate annual rate of change in amyloid PiB-PET (blue) or tau PET (green) and in each tau biomarker. %phospho-tau153 and amyloid PiB-PET
(ρ= 0.37, CI [0.15, 0.56] p= 0.001) and tau PET (ρ= -0.08, CI [- 0.31, 0.16] p= 0.52); %phospho-tau181 and amyloid PiB-PET (ρ= 0.45, CI [0.24,
0.62] p< 0.0001) and tau PET (ρ= -0.40, CI [-0.58, -0.19] p< 0.001); %phospho-tau205 and amyloid PiB-PET (ρ= 0.14, CI [-0.10, 0.36] p= 0.25)
and tau PET (ρ= 0.22, CI [-0.02, 0.43] p= 0.07); %phospho-tau217 and amyloid PiB-PET (ρ= 0.50, CI [0.30, 0.66] p< 0.0001) and tau PET
(ρ= -0.17, CI [-0.39, 0.06] p< 0.15); %phospho-tau231 and amyloid PiB-PET (ρ= 0.35, CI [0.13, 0.54] p= 0.0027) and tau PET (ρ= -0.25, CI [-0.46,
-0.02] p= 0.03);MTBR-tau243 and amyloid PiB-PET (ρ= 0.15, CI [-0.09, 0.38] p= 0.2018) and tau PET (ρ= 0.47, CI [0.28, 0.64] p< 0.001); total tau
and amyloid PiB-PET (ρ= 0.23, CI [-0.02, 0.45] p= 0.06) and tau PET (ρ= 0.1, CI [0.-15, 0.33] p= 0.44).

ing strong relationships with NFT tau pathology. The disassociation

between amyloid-related CSF tau biomarkers and tau PET indicates

these Aβ-PET associated soluble tau biomarkers, including p-tau217

phosphorylation, are not fully causally related with tau PET NFT

pathology.

3.4 Gantenerumab effect on tau-related disease
progression

Lastly, as EYOwas utilized to explore how fluid tau biomarkers change

over the disease course (Figure 1), we next assessed how the treatment

effect of gantenerumab changed this disease progression trajectory

relative to the placebo and solanezumab groups and NCs (Figure 4).

For these analyses, each measurement was scaled to a CentiMarker

range.29 Notably, the CentiMarker range is typically between 0 (com-

pletely normal) to 100 (highest level for symptomaticMCs). Therefore,

the greater the CentiMarker change, the closer it is likely getting

towards a normal value. The figure shows that for most amyloid-

related CSF tau biomarkers, gantenerumab resulted in a normalization

of trajectories of approximately 50% during the asymptomatic phase

(EYO < 0); this effect diminished after symptom onset (EYO > 0).

There was not a biologically significant effect of gantenerumab on

the trajectories of the tau tangle-related CSF tau biomarkers, with

gantenerumab treated and placebo treated participants following the

same trajectories). Using this approach, we better demonstrate the

magnitude of changes in these biomarkers in response to treatment,

relative to normal disease progression.
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F IGURE 4 Gantenerumab effects on the biomarker trajectories of DIAD. Purple hashed-dot representsmutation carrier placebo-control; blue
hashed represents mutation carrier gantenerumab treated group; green solid line represents non-carrier placebo-control. EYO- estimated years
to onset of symptoms; (A) PiB-PET (standard uptake value ratio (SUVR)); (B) Tau-PET (SUVR), (C) hippocampal volume (based onMRI) mm3; (D)
%phospho-tau153; (E) %phospho-tau181; (F) %phospho-tau205; (G) %phospho-tau217; (H); (G) %phospho-tau23; (I) Microtuble binding region
(MTBR)- tau243; (J) total tau level.

4 DISCUSSION

The co-development of effective Aβ-plaque lowering therapies and

methods for comprehensively measuring soluble tau proteins has pro-

vided the opportunity to validate recent natural history studies linking

the two canonical pathologies of AD (Aβ-plaques and tau tangles).

Specifically, interventional studies like this provide key information

to move from association to causal relationships. In this study, we

assessed the effects of both Aβ-plaque targeting and soluble Aβ-
monomer targeting therapies on multiple CSF tau biomarkers. Our

findings clearly indicate that increased phosphorylation of specific

regions of the tau protein correlatewithAβ-PET in the setting ofDIAD;
they are temporally linked to the initial rise in Aβ-PET and decrease

as Aβ-PET is pharmacologically reduced. In contrast, we confirmed the

relationship between selected tau tangle-related CSF tau biomarkers,

particularly MTBR-tau243 and p-tau205, and tau PET, but not amy-

loid PET. These findings demonstrate that amyloid-related CSF tau

biomarkers phosphorylated at tau residues 181, 217, and 231 indicate

the amount and change in amyloid plaques, while p-tau205 andMTBR-

tau243 are biomarkers of tauNFTpathologymeasured by tau PET. The

combination of biofluid and PET biomarkers of Aβ and tau, along with

the selectiveAβ-plaque reduction fromgantenerumab, provides strong

experimental support for recent natural history studies that suggest

state dependent tau changes in AD.

Multiple natural history studies of DIAD and sAD1,2,4,5,7,34–37 have

identified correlations between the development of Aβ-pathology and
the increase in multiple CSF phospho-tau levels, particularly p-tau217

and p-tau231. Likewise, Aβ-lowering immunotherapy trials in sAD

have demonstrated decreases in plasma measurements of p-tau181

and 21738–40 in parallel with reductions in Aβ-PET.15,16,41 Our cur-

rent results, along Aβ-plaque lowering trials in sAD14,16,41 validate

increases in p-tau217 as amarker of Aβ-plaque pathology asmeasured

by PET. Although this does notmechanistically prove Aβ-plaques cause
the elevation of amyloid-related CSF tau biomarkers, the unique asso-

ciation of these changes of p-tau in AD and not other proteinopathies,

the temporal links with Aβ-plaque changes, and now the clear associ-

ations with an intervention that lowers Aβ-plaques, but not tau NFTs,

provides strong validation for a direct link of these initial stage CSF

p-tau measures and amyloid plaques. Our findings of a consistent neg-

ative association between the rate of change of amyloid-related tau

biomarkers and tau PET, Figure 3, reinforces the distinction between

the tau biomarkers that first emerge with Aβ-plaques and respond to

therapies that lowers Aβ-plaques but have minimal effect on tau PET.

The difference in the magnitude of the negative associations of the

amyloid related tau biomarkers may reflect differences in the concen-

trations, and thus variability, and/or could also reflect differences how

these biomarkers change with NFTs. There is increasing evidence that

pT217 has a more dynamic relationship based on the stage of disease
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-i.e. early elevation with Aβ-plaques, but a greater association with tau
PET at later stages of disease.42

The high concordance between a normal Aβ-PET level and a nor-

mal pT217/T217 ratio also suggests that p-tau217 could be used to

monitor for an initial and substantial response to Aβ-plaque lowering

therapies in the context of AD. This could be particularly advantageous

given the availability of blood-based p-tau217 assays, and the mini-

mally invasive nature of phlebotomy.However, recent trials in sAD that

have resulted in Aβ-PET levels decreasing to levels near normal, have

resulted in phosphorylated tau measures decreasing to approximately

fifty percentof normal levels.19 Whether this discrepancy inmagnitude

reduction of Aβ-PET and soluble p-tau with amyloid immunotherapy

represents a continued contribution of NFTs to all p-tau measures, or

whether there are other amyloid aggregates not detectable by PET

still driving p-tau phosphorylation, or longer treatmentwith Aβ-plaque
lowering therapies is needed, remains to be determined. Despite the

engagement of Aβ-monomers by solanezumab, there was no effect on

any of the Aβ-plaque associated phospho-tau biomarkers. This, again,

reinforces the unique association with initial phospho-tau biomarkers

as a reaction to substantial Aβ-plaque pathology.
In contrast to the progress in therapies lowering Aβ-plaque pathol-

ogy, significantly less progress has beenmade in identifying agents that

can lower NFT pathology. An exception is recent phase 1 trial data

on antisense oligonucleotide therapies.43 Future studies should eval-

uate the potentially causal link between putative tau tangle-related

CSF tau biomarkers, pT205/T205 and MTBR-tau243, and NFT (tau

PET). Although neither gantenerumab nor solanezumab influenced

these soluble late-stage CSF NFT pathology measures or tau PET, with

the exception of a potential increase in MTBR-tau243 in solanezumab

treated group, we were able to demonstrate important longitudinal

associations between these tau tangle-related CSF tau biomarkers and

tau PET. For all groups in this study, the correlations for the rate of

change were highest between MTBR-tau243 and tau PET. Interest-

ingly, although pT205/T205 levels increased closer to disease onset,

when tau PET increases, the rate of change was not highly correlated

with tau PET change. Yet, the reduction of PiB PET and pT217/T217 in

the gantenerumab treated groupwas not replicatedwith pT205/T205.

This suggests that the phosphorylation of T205 marks a distinct phase

in the course of tauopathy in AD.44,45 Despite the relatively small num-

ber of individuals included in this study, the association of late-stage

fluid biomarkers with tau-PET support recent cross-sectional studies

from larger numbers of at-risk and symptomatic sAD.6

Together, these results further the concept that tau-related fluid

biomarkers inform the state and stage of AD. This has resulted in dif-

ferent soluble tau biomarkers being included in the updated Alzheimer

Association’s Diagnosis and Staging of AD criteria.46 Specifically, p-

tau217 is now proposed as a core biological marker of amyloid

pathology, sufficient to identify this key pathobiological process of AD.

Likewise, p-tau205 andMTBR-tau243 and other soluble tau measures

are included as potential markers of a later biological pathobiological

stage of ADmore closely associatedwith clinical symptoms. Additional

clinical trial data from larger Aβ-immunotherapy trials will further vali-

date this staging. Furtherwork is neededwith therapies that lowerNFT

pathology to validatemeasures likeMTBR-tau243asbiomarkers of tau

aggregates.

An important limitation for this work is the inclusion of DIAD

participants only, which may limit generalizability to sAD. However,

recent analyses of these same CSF tau-related measures have iden-

tified very similar temporal associations with disease progression

in sAD (amyloid- and tau-related biomarkers), and similarly strong

correlations between Aβ-plaque or tau PET and initial- and later-

stage tau biomarkers. Moreover, recent clinical trials of multiple

Aβ-plaque lowering therapies that have evaluated soluble (plasma

or CSF) phospho-tau measures have demonstrated similar associa-

tions betweenAβ-plaque reduction and substantial reductions of initial
tau biomarkers.11,13,16,41,47 This suggest the results from our study

in DIAD are likely applicable to sAD, but analyses on the late-stage

tau biomarkers are needed in sAD interventional trials that remove

plaques or lower tangles, to further assess this. Another limitation of

this work is the lack of plasma tau biomarkers available to assess for

similarities toCSFmeasures. Lastly, thepost-hocnatureof these studies

and the relatively limited numbers do not support sub-group analyses,

although the strong and consistent biological effects provide sufficient

power for conclusions.

This study suggests that, in AD, the presence and reduction of

Aβ-plaque pathology can bemeasured not only by Aβ specific biomark-

ers but certain phospho-tau biomarkers as well. The development of

blood-based phospho-tau measures, like p-tau217 concentrations and

ratios, offers an important opportunity to monitor the initial response

to anti-Aβ-plaque therapies through repeated measures using non-

invasive, more accessible techniques. Ongoing and future studies

targeting tau pathology may clarify the associations between specific

soluble biomarkers and NFTs and determine whether tau therapies

could also bemonitored with blood or CSFmeasures.
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