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Abstract. Epilepsy is a common neurological disorder diagnosed and
monitored through EEG recordings. Accurate spike-and-wave (SW) pat-
tern classification is crucial for distinguishing this epileptic seizure disor-
der from normal brain wave activity (NW). However, mathematically
modeling SW remains challenging, affecting classification accuracy. This
study proposes a pipeline in two stages combining polynomial regres-
sion techniques, and data processing, in a machine-learning classification
scheme. At the first stage of decision-making, the idea is to create a
generalized waveform mother that represents all the waveforms of the
EEG patterns, such as SW and NW. This waveform is derived from a
polynomial regression model that is assessed by the truncation error of
the Taylor series. In the second stage, a feature selection algorithm based
on a vector that includes the coefficients from Taylor and the statistical
properties of the SW and NW waveforms was designed for the machine
learning classifier. This algorithm uses the confidence interval to extract
the Taylor series points that do not represent the generalized mother
equation. This yields a dimensional reduction of this vector, which can
be used in a classification and detection scheme. Three polynomial regres-
sion models, such as Fourier, Gaussian, and sums-of-sines were evaluated
using the pipeline methodology. The best model was the Fourier regres-
sion, which achieved an accuracy of 96.2% using the SVM classifier with
a Gaussian kernel to detect spike-and-wave patterns.

Keywords: Spike-and-wave · Polynomial regression · Taylor series · Fea-
ture selection

1 Introduction

Epilepsy is one of the most common neurological diseases, affecting approxi-
mately 50 million people worldwide [1]. This condition is characterized by the
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occurrence of epileptic seizures, which are the result of abnormal and excessive
electrical activity in the brain. The electroencephalogram (EEG) is a crucial
biomedical tool used for the diagnosis and treatment of epilepsy because it al-
lows for the recording and analyzing of brain waves to detect epileptiform ac-
tivity, such as the spike-and-wave (SW) waveform pattern [2]. In the healthcare
industry, EEG signals are widely used for detecting and classifying epileptiform
waveform patterns, essential for an accurate diagnosis [3]. However, signal inter-
pretation remains challenging due to the complexity of the waveforms and the
need to differentiate between epileptiform activity and normal brain waves (NW)
[4]. Automating this process using machine learning techniques and advanced sig-
nal processing has gained ground in the last decade, improving the accuracy and
efficiency of diagnosis [5, 6]. However, difficulties persist in the precise mathe-
matical representation of SW patterns and in assessing the impact of errors in
this representation on classification models [7]. The problem lies in the need to
develop mathematical models in EEG analysis that accurately capture the shape
of SW waves, allowing them to be differentiated from NW and improving the
classification algorithms’ accuracy [8]. Today, the lack of precision in waveform
representation can lead to significant errors in classification, directly affecting
the ability of automatic systems to make reliable diagnoses [9, 10, 11, 12, 13].
This study addresses this problem by implementing a comprehensive pipeline
that combines regression techniques, data processing, and classification models
to analyze SW and NW waveforms. This pipeline, the main contribution of this
work, consists of two stages. The first stage is for decision-making, and the sec-
ond is for feature selection and classification. The decision-making goal is to use
polynomial regression modeling to create a generalized mother equation based
on the EEG waveforms. This generalized waveform is asses through the trun-
cation error of the Taylor series. This stage produces a polynomial regression
function and the Taylor coefficients at each point of this function. In this study,
Fourier regression was the best model regarding the other two models studied,
such as Gaussian, and Sum-of-Sines. The second stage applies the optimal results
from the first stage to detect and classify spike-and-wave epileptiform patterns
in EEG signals based on the feature selection algorithm. The input of this algo-
rithm is the feature vector given by mean, median, standard deviation, kurtosis,
and skewness from the SW and NW waveforms, and the Taylor series coefficients
in each point. This algorithm focuses on extracting the Taylor series points that
are not representative from the generalized mother equation using the confidence
interval, yielding a dimensional reduction of this vector to be used in a classifi-
cation and detection scheme.
The rest of this document is organized as follows. Section 2 presents the database,
the mathematical theory, the proposed pipeline, and the feature selection algo-
rithm. In Section 3, results are analyzed and discussed. Finally, conclusions and
perspectives are presented in Section 4.
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2 Material and Methods

2.1 Database

Signals were acquired from 12 patients at the Epilepsy Department of the Foun-
dation for the Fight Against Pediatric Neurological Diseases (FLENI). An expert
neurologist in epilepsy labeled 339 SW and 441 NW waveforms of the EEG sig-
nals, indicating the onset and duration of the epileptic waveform. A standard
10-20 EEG system with a sampling rate of 256 Hz was used with the following
22 channels: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4,
T6, O1, O2, Oz, FT10, and FT9. Each waveform consists of a temporal sequence
of amplitudes with morphological characteristics. SW waveforms are characte-
rized by their regular and symmetrical morphology, combining spike peaks and
smoother waves. This distinguishes them from NW waveforms, which have a
less structured and more variable morphology. On average, the SW amplitudes
are approximately 500, while the NW amplitudes are around 300. The total du-
ration of the waveforms is approximately 100 to 264 seconds. Figure 1 shows
representative examples of both types of waveforms. See [14] for more details of
this database.

Fig. 1. Spike-and-waves and normal brain waves examples.

2.2 Pipeline methodology

The pipeline proposed in this study addresses the classification of spike-and-
waves (SW) and normal brain waves (NW) using a comprehensive approach
that combines data processing, polynomial regression techniques, and the Tay-
lor series in a classifier scheme. The pipeline consists of two stages. The first
stage is for decision-making, illustrated by the red dashed line in Figure 2. The
second stage applies the optimal results from the first stage to feature selection
and detect and classify spike-and-wave epileptiform patterns in EEG signals,
illustrated by the blue dashed line in Figure 2.
The first stage begins with resizing the waveforms because all signals have diffe-
rent total durations in seconds. Thus, the maximum size of all waveforms was
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calculated, and each SW and NW signal was resized to this maximum size us-
ing linear interpolation (Section 2.3). This process results in a single resolution
size for all signals. Since the equation of the waveforms of interest is not known
in advance, three polynomial regression models (Section 2.4) such as Fourier,
Gaussian, and Sum-of-Sines were evaluated according to the metrics to identify
which model best fits each resized waveform. The metrics used, such as Degrees
of freedom for Error, Coefficient of determination R2, Adjusted R2, and the Root
mean square error (Section 2.9), yielded that the Fourier regression was the best
model. It produces an equation with coefficients representing each waveform.
These coefficients were averaged to calculate a single overall coefficient to esti-
mate the generalized mother waveform equation (Section 2.5). Finally, the Taylor
series (Section 2.6) was utilized to approximate the equation of the generalized
mother waveform at each point. The underlying idea is to assess how the series
behaves relative to the original waveform and to determine whether it will be a
good representation for subsequent analysis in the second stage of the pipeline.
In addition, the truncation error (Section 2.7) is calculated at each point and
cumulatively, providing a measure of the accuracy of the Taylor approximation
for representing these waves.
In the second stage of the pipeline, a feature vector with two sets was built.
The first set is based on the Taylor Series evaluation of degree 8 at each point.
This indicates that the series is calculated in 1-second intervals, fully encom-
passing each SW and NW signal. Note that this data represents the results
of the best decision-making model, the Fourier regression. The second set uses
classical statistical properties, extracted directly from the original signals. The
mean, median, standard deviation, kurtosis, and skewness improve the informa-
tion available for the analysis.
At this point, the feature vector contains the Taylor Series approximation points
and the statistical properties of each SW and NW signal (Section 2.10). This
feature vector carries all the information needed to detect and classify spike-
and-wave epileptiform patterns in EEG signals. The feature selection of this
feature vector was performed using the proposed algorithm 1. This algorithm
analyzes the points of the generalized mother equation that do not represent
the classification model using the confidence interval. Subsequently, all features
are normalized using the Min-Max Scaling technique from -1 to 1, ensuring that
the data are in a uniform range and comparable (Section 2.8). To validate the
effectiveness of the dataset, a 5-fold cross-validation is implemented, reserving
20% of the data for final testing. The theoretical framework used in the pipeline
is introduced below.

2.3 Linear interpolation

Let Smax = max(max(SW),max(NW)) be the maximum size of all waveforms.
Let ti and ti+1 be two successive points from each vector related to each waveform
or class, SW(t) and NW(t). The goal is to find an intermediate point t between
these two points. Then the linear 1D interpolation correspondent to each interval,
ti+1 − ti, and for 1 ≤ SW(t)|NW(t) ≤ Smax is given by:

t = (1− t) ∗ ti + t ∗ ti+1 = ti+1 + t(ti+1 − ti) (1)
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Fig. 2. Pipeline to detect and classify spike-and-wave epileptiform patterns in EEG
signals. The decision-making stage includes all processes within the red dashed line. The
feature selection and classification stage includes all processes within the red dashed
blue.

2.4 Polynomial regression modeling:

Since the mathematical waveform of spike-and-wave is not known in advance,
a mathematical model was created to describe its characteristics. Gaussian,
Fourier, and Sum-of-sines polynomial regression models were evaluated to fit
the EEG signals. These models can capture the specific and regular morphology
of the waveforms, which is important for accurate pattern recognition. Each one
is introduced below.

Gaussian Regression: A statistical method that uses the Gaussian function
to describe a relationship between waveforms, approximating the function to fit
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the peaks. The Gaussian model is expressed as:

f(x) =

n∑
i=1

ai exp

[
−
(
x− bi
ci

)2
]

(2)

where ai is the peak height or amplitude, bi is the peak’s center position or
location, ci is the peak width, and n is the number of peaks to fit.

Fourier Regression: A statistical method that uses the Fourier series to des-
cribe a relationship between waveforms as a sum of sine and cosine functions.
The trigonometric Fourier series is given by:

f(x) = a0 +

N∑
i=1

ai cos (iωx) + bi sin (iωx) (3)

where a0 is the intercept, a constant term associated with the i = 0 cosine term,
ai and bi are the Fourier coefficients, n is the number of terms, and ω is the
fundamental frequency.

Sum-of-sines regression: A statistical method that fits a weighted sum-of-
sines functions to data. The mathematical expression for this model is:

f(x) =

n∑
i=1

ai sin(bix+ ci) (4)

where ai, bi, and ci are adjustable parameters that control the amplitude, fre-
quency, and phase of each sin component respectively, and n is the number of
terms. Note that this model includes the phase constant, and does not include the
intercept term. This is the main difference from the Fourier Regression method.

2.5 Generalized mother waveform equation

Let f(x) be the polynomial regression model that best fits each X EEG wave-
form. Let C ∈ Rf×c the coefficients’ matrix from each f(x), where f is each
equation and c each coefficient. The mean of all coefficients was calculated to
yield a generalized representative alignment, which captures the studied wave-
forms’ main periodic and morphological characteristics.

2.6 Taylor approximation
The Taylor series expansion provides a way to represent a function as an infinite
sum of terms. Its derivatives are calculated at a specific point to approximate
complex functions to feasible polynomials [15]. The idea is to approximate the ge-
neralized alignment waveform of the set of SW and NW to a polynomial function.
In this case, the best polynomial regression model that fits the EEG patterns,
see Section 2.4. Thus, it is necessary to define the function to be expanded, the
variable, the initial point, and the number of terms in the Taylor series. :

f(xi+1) =
∞∑

n=0

f (n)(xi)

n!
(xi+1 − xi)

n (5)

where f (n)(xi) is the n-derivative of f evaluated at xi, and xi is the point around
which the function is expanded.
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2.7 Error Measurement

It is used to assess the accuracy of an approximation or model compared to
the true value. It helps determine how close or far an estimated result is from
the true value, allowing for improved methods and informed decisions. Different
metrics are used for this purpose.

True Error (Et) : It is the difference between the exact value of a function or
series and its finite approximation. It is the error generated by putting a finite
number of decimals in an approximation.

Et = true value− approximate value (6)

Percent Relative Error (εt) : It indicates how significant the difference is
between the prediction and the actual value.

εt =
Et

true value
100% (7)

Normalized Percent Error (εa) : It measures errors when the actual appro-
ximation value is unknown.

εa =
present approximation− previous approximation

present approximation
100% (8)

Truncation error Eξ : It arises from using the Taylor series approximation
instead of an exact mathematical expression method. The complete expansion
of the Taylor series Eq. (5) is defined as

f(xi+1) = f(xi) + f ′(xi)h+
f ′′(xi)

2!
h2 + · · ·+ f (n)(xi)

n!
hn +Rn (9)

Rn =
f (n+1)(ξ)

(n+ 1)!
hn+1 (10)

where the subindex n of R indicates the residue of the n order approximation,
ξ is the truncation error, a value of x that is located somewhere between xi and
xi+1. For a comprehensive mathematical treatment of truncation errors, see [15].

2.8 Min-max normalization

It is a method for scaling data to a fixed range of values from minimum to
maximum. It is beneficial to prevent data analysis from being influenced by the
variation in time.

x′ =
2× (x−min(x))

max(x)−min(x)
− 1 (11)

where x is the original value of the wave, min(x) is the minimum value of the
wave in the data set, max(x) is the maximum value of the wave in the data set,
and x′ is the normalized wave value, scaled in the range −1 to 1.
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2.9 Metrics performance

The following metrics were used to evaluate the fit quality of the regression
models used in this study:

Sum of Squares Error (SSE): It measures the discrepancy between the ob-
served values and the values predicted by the regression model. It is calculated
by summing the squares of the differences between the actual values yi and the
predicted values ŷi [16]. A lower SSE indicates a better fit of the model to the
data. It is given by:

SSE =
n∑

i=1

(yi − ŷi)
2 (12)

Degrees of Freedom for Error (DFEs): It represents the number of inde-
pendent observations in a model minus the number of estimated parameters,
including the intercept. DFEs are primarily used in assessing the statistical sig-
nificance of regression coefficients because they influence the error variance esti-
mation. It is given by:

DFE = n− p− 1 (13)

where n is the total number of observations and p is the number of predictors
in the model [17].

Coefficient of Determination R2: It measures the proportion of the variance
in the dependent variable explained by the regression model. R2 ranges between
0 and 1, where a value of 1 indicates that the model perfectly explains the
variability observed in the data. It is given by

R2 = 1− SSE

SST
(14)

where SST is the Total Sum of Squares, representing the total variability in the
data, although R2 provides a general measure of model fit [18].

Adjusted R2: It is a modified version of the R2 that takes into account the
number of predictors in the model. Unlike R2, adjusted R2 penalizes adding
additional predictors that do not significantly improve the model. It is calculated
as:

R2
adj = 1− (1−R2)(n− 1)

n− p− 1
(15)

where n is the number of observations, and p is the number of predictors [19].

Root Mean Square Error (RMSE): RMSE measures the average magnitude
of the error in the model’s predictions. It is the square root of the average of
the squared errors and is expressed in the same units as the dependent variable,
which makes it easier to interpret [20]:

RMSE =

√
SSE

n
(16)
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2.10 Feature vector

Let μ, x, σ, κ, γ be the mean, median, standard deviation, kurtosis, and skewness,
the statistical properties respectively of each SW and NW waveform. Let T ′ ∈
Rp×s be the vector of p points and s seconds corresponding to the Taylor Series
approximation points in each sec. The final feature vector is defined as

θ = [T ′, μ, x, σ, κ, γ] (17)

2.11 Feature Selection

In this paper, a feature selection algorithm was designed to reduce the number
of variables in the dataset, see Algorithm 1. Remember that the dataset contains
the Taylor approximation points and the statistical properties. For each second,
a Taylor approximation point was computed. Thus, each point represents a fea-
ture. This algorithm focuses on reducing these points because not all points are
equally representative of the overall signal. Therefore, those points that do not
provide significant information are identified and eliminated. For this purpose,
the algorithm compares the waveforms between the generalized equation and the
polynomial regression model of each SW and NW pattern, identifying the points
inside and outside the confidence interval. The points within the confidence in-
terval are considered redundant because they do not provide new or significant
information about the signal. These points are marked for elimination. There-
fore, the points of interest are those outside the confidence interval, see Figure 3.
This process allows a dimensional reduction of the dataset without losing the
most relevant aspects of the signal.

Algorithm 1 Feature selection algorithm

Input: f(x) (regression), z (Confidence interval), n (Regression duration),
Output: cols (Non-representative points of the regression)
1: cols ← []
2: i ← 0
3: z ← 0.2 // Choice according to the criterion
4: while i < n do
5: int sup ← f(i) + z · σ //σ is the std
6: int inf ← f(i)− z · σ
7: for j ← i+ 1 : n do
8: if f(j) ≤ int sup and f(j) ≥ int inf then
9: cols ← j
10: else
11: break
12: end if
13: end for
14: i ← j
15: end while
16: return cols
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3 Results

This section presents the results from the proposed pipeline for detecting and
classifying spike-and-wave epileptiform patterns in EEG signals. Three polyno-
mial regression models in the decision-making pipeline, namely Fourier, Gaus-
sian, and sum-of-sines, were evaluated with their metrics, to select the best model
that fits the EEG signal waveform. Table 1 shows the performance metrics for
the three polynomial regression models evaluated. Fourier regression stands out
for its superiority in all the assessed metrics. A higher R2 and lower RMSE
values suggest a better fitting capacity and accuracy in representing SW wave-
forms. Gaussian regression also shows acceptable performance, with relatively
high value for R2 and adjusted R2. In contrast, the Sum-of-sines regression pre-
sented significantly inferior performance, with a negative R2 value and a high
RMSE value, suggesting a lack of ability to capture the characteristics of SW
waveforms. The Fourier regression was fitted for each EEG waveform from the

Table 1. Comparison of the three Polynomial regression models evaluated

Model SSE DFE R2 Adjusted R2 RMSE

Gauss 755346.3235 155.8053 0.7367 0.7089 53.6163

Fourier 320986.8081 152.7788 0.9093 0.9020 26.5285

Sum-of-sines 825650.9445 146.7876 0.2540 -0.0936 64.9567

dataset. Remember that the dataset contains 339 SW and 441 NW signals, see
Section 2.1. This process yields 18 coefficients for each waveform. These are
averaged to generate a final generalized mother waveform equation, see equation
(18) with a morphology similar to that observed in the original signals, see signal
with blue color in Figure 3.

fSWS(x) = 38.2296 + 14.6907 cos(0.0312 · x)− 134.9640 sin(0.0312 · x) (18)

− 95.5140 cos(0.0624 · x)− 4.6392 sin(0.0624 · x)
− 32.4604 cos(0.0936 · x) + 55.7023 sin(0.0936 · x)
+ 30.1549 cos(0.1248 · x) + 4.1776 sin(0.1248 · x)
+ 17.1263 cos(0.156 · x)− 22.0911 sin(0.156 · x)
+ 5.1722 cos(0.1872 · x)− 9.7515 sin(0.1872 · x)
+ 6.1877 cos(0.2184 · x)− 1.8771 sin(0.2184 · x)
+ 4.3840 cos(0.2496 · x) + 0.1376 sin(0.2496 · x)

Note that different Taylor series degrees generate good coefficients for a classifier
and detection scheme with low computational complexity and small errors. The
Taylor series approximation errors were calculated at each point of the genera-
lized Fourier function with the average of the coefficients. Remember that these
values are part of the input from feature vector Eq. 17 for the second stage of the
pipeline. Table 2 shows the cumulative errors of all signal points in each function
degree. Note that, in both Figures, as the degree of the Taylor series approxi-
mation grows until n=8, the error decreases until it becomes imperceptible.

13th Conference on Cloud Computing Conference, Big Data & Emerging Topics

-   44   -



Fig. 3. Graphical representation of the generalized mother waveform (blue color) from
the Fourier regression, with its confidence interval of z = 0.2 (light blue rectangles)
and its points outside the confidence intervals from the Taylor series approximation
(red circles).

Table 2. Cumulative errors. Et: True error. Eξ: Truncation error. Et:Percent relative
error. εa: Normalized percent error

Taylor degree Et Eξ Et εa

0 -60.7772 -77.4907 -7.7491e+05 1.5266e+04

1 1.1755 -2.8812 1.0822e+03 9.0007e+03

2 0.2302 0.5151 66.0135 2.4176e+04

3 -6.2901e-04 -0.0066 0.1901 1.5160e+04

4 -5.2751e-04 -0.0011 0.1765 1.5225e+04

5 -1.6621e-06 2.3260e-05 0.0076 1.5235e+04

6 5.9759e-07 1.1875e-06 1.6747e-04 1.5235e+04

7 4.0414e-09 -2.8451e-08 2.9340e-06 1.5235e+04

8 -4.4729e-10 -7.9035e-10 1.2316e-07 1.5235e+04

For the second stage of the pipeline, the feature vector contains the Taylor
series approximation points T of degree 8 at each point, with the statistical
properties μ, x, σ, κ, γ of the SW and NW signals. The proposed feature selection
algorithm 1 achieved a dimensionality reduction of 23%. For illustration, Figure 3
shows the confidence interval (light blue rectangles), the points T outside the
confidence interval (red color) from the generalized Fourier function (blue color).
Remember that for the feature selection algorithm θs, the points of interest are
those outside the confidence interval. θs is the feature selection from the feature
vector θ, this vector was normalized to be tested in a machine-learning scheme.
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Three classical machine models, such as Decision Trees, SVM with Gaus-
sian kernel, and 10-nearest neighbors, were tested with θs. Table 3 shows the
variations of the classification models depending on the degree of Taylor appro-
ximation in terms of accuracy. All models perform well, but the Gaussian SVM
excels compared to the other models as the Taylor degree increases.

Table 3. Classification models comparison in terms of accuracy.

Taylor degree Decision Tree SVM 10-NN

0 0.8970 0.9310 0.8140

1 0.9420 0.9620 0.8330

2 0.8910 0.9290 0.8190

3 0.8900 0.9280 0.8200

4 0.8900 0.9300 0.8200

5 0.8890 0.9290 0.8210

6 0.8870 0.9280 0.8200

7 0.8860 0.9280 0.8210

8 0.8860 0.9300 0.8200

4 Conclusions

This work proposed an original two-stage pipeline to classify spike-and-wave
epileptiform patterns in EEG signals. The first stage is for decision-making and
the second is for feature selection and classification. At the decision-making
stage, polynomial regression models of Fourier, Gaussian, and sums-of-sines were
analyzed to find the best model that fits all the EEG waveform patterns, such
as SW and NW. The best model was Fourier regression based on error metrics.
From this model, a generalized waveform equation was computed, averaging all
its coefficients for all waveform patterns. This generalized equation was eva-
luated through the truncation error of the Taylor series. In the second stage,
a feature selection algorithm was designed. The algorithm computes the confi-
dence interval for the generalized equation and the Taylor coefficients given by
the polynomial regression model of each SW and NW pattern. The points inside
and outside the confidence interval are detected and compared. Only the points
outside the confidence interval were considered to yield a dimensional reduction
of this data. Finally, the algorithm output coupled with the statistical properties
of the SW and NW waveforms builds a vector to be used in a classification and
detection scheme. The Fourier regression achieved an accuracy of 96.2% using
the SVM classifier with a Gaussian kernel, allowing the detection of spike-and-
wave patterns.
In addition to its excellent performance, the proposed pipeline has a low com-
putational cost. The proposed pipeline’s main limitation is that it does not ex-
plicitly consider physiological and non-physiological artifacts. Future work will
focus on evaluating the proposed pipeline more extensively and studying robust
feature extraction methods using highly imbalanced data.
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