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Summary
PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted almost
exclusively to germ line cells. In recent years, accumulating evidence has demonstrated that piRNAs are
actually expressed in somatic cells like pluripotent, neural, cardiac and even cancer cells. However, controversy
still remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9
pluripotent stem cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of
447 piRNAs, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority
of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation,
though no evidences for secondary piRNAs (ping-pong loop) were found. Genes hosting piRNAs in cardiac
samples were related to critical biological processes in the heart, like contraction and cardiac muscle development.
Our results indicate that somatic piRNAs might have a role in fine-tuning the expression of genes involved in
the differentiation of pluripotent cells to cardiomyocytes.
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RNAs

Introduction

Differentiation of pluripotent stem cells (PSC) to
cardiomyocytes (CM) was first reported shortly after
the characterization of embryonic stem cells (ESC) (1 ).
Initially, differentiation was non-specific and sponta-
neously achieved, but in the last 10 years upgraded
protocols have been developed significantly improv-
ing efficiency and reproducibility in cardiac differen-
tiation (2–4 ). These protocols are based in sequen-
tially adding factors (morphogens) and/or inhibitors
that modulate Wnt/β-catenin signaling pathways in
pluripotent cells. PSC-based models undergo epithelial-
to-mesenchymal transition to an early mesoderm pro-
genitor cell (MPC) (2 , 5 ) followed by further commit-
ting to cardiac mesoderm and later cardiac progenitor
cells (CPC), which may eventually adopt more espe-
cialized features. Though this is arguably similar to
in vivo embryo development, they recapitulate hall-
mark features of differentiation thus becoming well
suited tools for disease modelling, drug screening and
potential cell-based therapies.

Like many other developmental processes, changes
associated with differentiation to CM are tightly reg-
ulated. Only recently, and mostly due to the advent
of next generation sequencing technologies, the scien-
tific community is unveiling the complex regulatory
networks governing the shifts in gene expression pro-
files. Non-coding RNAs (ncRNAs) are critical play-
ers in these networks, regulating almost all cellular
processes including proliferation, differentiation and

death (6 , 7 ). Although microRNAs (miRNAs) are the
most extensively studied in a wide variety of organ-
isms (8–11 ), other ncRNAs have been identified such
as long non-coding RNAs (lncRNAs), small interfer-
ing RNAs (siRNAs), circular RNAs (circRNAs) and
PIWI-interacting RNAs (piRNAs). Much has been
published about these ncRNAs, though piRNAs is one
of the least understood. Thought to be initially con-
fined almost exclusively to germinal cell lines (12 ),
piRNAs gained much attention primarily because of
an increasing amount of evidence demonstrating that
these ncRNAs are not only expressed in somatic cells
but they actively participate in gene regulation as well
(13–16 ).

Expression of piRNAs was first described as nega-
tively regulating transposition of repetitive elements
thus protecting genome integrity and favouring self-
renewal (12 , 17 ). Reports in numerous organ-
isms showed that they exert their regulatory func-
tion through binding a specific clade of the Arg-
onaute (AGO) family -namely PIWI proteins-, result-
ing in an association which resembles the well-known
AGO/miRNA complex (8 , 18–20 ). Unlike miRNAs,
piRNAs are primarily biosynthesized as single-stranded
long precursors which are then clived into the 24-34
nucleotide-long mature forms in a Dicer-independent
manner (12 , 21 , 22 ). They show a bias for uridine (U)
redidues in 5‘ ends together with a 2‘O-methyl modifi-
cation at their 3‘ ends. Germ line piRNAs were also
found to be synthesized through a secondary pathway
named the Ping-Pong amplification loop, which in-
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Figure 1: Detection of piRNAs in small RNAseq samples. a) Length frequency of unfiltered mapped reads in three
samples from pluripotent cells (PSC), three from mesoderm progenitor cells (MPC) and three from cardiac cells (CPC). Grey
areas denote the size range for both microRNAs (miRNA) and putative piwi-interacting RNAs (piRNA). The color key used
is indicated in top right corner of the plot. b) Number of mapped reads for all nine samples before processing (unfiltered, grey
box), after filtering by read length (23 < RL < 35, coral box) and removing non coding RNA other than piRNAs (-ncRNA,
green box). c) Distribution of mapped reads as a function of density on a fragment of chromosome 4 (chr4:100,000,000-
120,000,000; −) which includes pluripotency miR-302b and a fragment of chromosome 5 (chr5:149,300,000-149,600,000, +)
including cardiac miR-143 for unprocessed alignments (top panels, unfiltered data) and fully processed samples (bottom
panels, length+ncRNA filtered). Alignment files from each experimental replicate were merged into one. Color key for the
density curves is shown in the graph. d) Analysis of coverage on all piRNA loci available in piRbase for fully processed
normalized (counts per million) samples.

creases levels of primary piRNAs using target mRNAs
as intermediary molecules for processing new piRNA
precursors (20 , 23 ). Of note, these mechanisms seem
to be highly conserved across species (18 , 24 ).

In the last few years, many studies have proposed
an active participation of PIWI/piRNAs complexes
in diverse and critical pathways such as neural devel-
opment or body regeneration of lower eukaryotes (25 ,
26 ). Furthermore, recent work demonstrated a positive
correlation between altered piRNA expression profiles
and clinically relevant pathologies. The involvement of
specific piRNAs in regulating mRNAs levels of genes
related to Alzheimer’s disease was described in 2017
(27 ), while other groups implicated piRNAs in cardiac
function and regeneration through modulation of AKT
pathwway (28 , 29 ). However, great controversy still
remains around expression, function and biosynthetic
pathways of somatic piRNAs. Particularly, the poten-
tial role of piRNAs in differentiation of pluripotent
stem cells to cardiomyocytes has not been formally
addressed. Using small RNAseq data generated in
our laboratory (11 ) we characterized the expression
profile of small RNAs consistent with piRNAs in three
stages of cell differentiation from pluripotency (day 0)
to mesoderm (day 3.5) and then contractile cardiocytes
(day 21). Results presented here provide evidences sup-

porting the existence of somatic piRNA transcripts
and their stage-specific pattern as a mechanism for
potentially fine-tuning gene expression during cell dif-
ferentiation.

Results

Detection and characterization of piRNA

Detection of piRNAs was conducted on small
RNAseq samples from three independent experiments
consisting of pluripotent stem cells (PSC, day 0), early
mesoderm progenitor cells (MPC, day 3.5) and cardiac
progenitor cells (CPC, day 21). After aligning reads to
human reference genome (hg38), we found that more
than half of mapped reads were 20 to 23 nucleotides
(nt) long, where the abundant miRNAs are included
(Figure 1a, (11 )). Considering that the average length
of piRNAs in mammals ranges between 24 and 34 nt
(12 , 22 , 30 ), mapped reads were filtered by length
to accommodate to this restriction. Nearly 50-70% of
mapped reads were removed from the samples after
this initial processing step (Supplemental Figure 1a
and Supplemental Table 1). Then, employing a similar
approach as previously published work (15 ), we filtered
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Figure 2: Characterization of reads mapped to known piRNAs. a) Frequency of bases per position in reads mapped
to known piRNAs after fully processing alignments from PSC, MPC and CPC samples (merged replicates). Position 1 is
marked by a vertical grey bar. b) Frequency profile showing overlap between reads mapped to known piRNA loci in sense
orientation and complementary reads using an independent approach (ssviz package).

out any read that mapped on ncRNAs besides piRNAs
given that previous publications emphasized on the
fact that many identified piRNAs were actually frag-
ments of other types of ncRNAs (31 ). Approximately
5-20% of initial mapped reads remained after this step
(Supplemental Table 1). Importantly, all nine aligned
samples behaved similarly to both filtering steps (Fig-
ure 1b), reflecting consistency among experimental
replicates.

To verify the elimination of potential misleading
contaminants in fully processed alignments, we ana-
lyzed the distribution of mapped reads over two well-
characterized miRNAs, pluripotency-associated miR-
302b and cardiac-expressed miR-143 (11 ). As expected,
expression of miR-302b was evident in unfiltered data
of PSC and MPC populations while miR-143 showed
appreciable coverage in unfiltered data of CPC (Fig-
ure 1c, top panels). No signal was detected for either
of the two genes in processed alignments (Figure 1c,
bottom panels). However, these samples showed a
strong and sharp coverage signal on known piRNA
loci (Figure 1d) confirming that the pipeline employed
successfully enriches for reads mapping to these known
piRNAs. Henceforth, all analyses were performed on
fully processed alignments unless explicitly specified
otherwise.

Sequence analysis of reads mapping to known piRNA
loci showed that all samples but MPC bore a bias for
5‘ uridine residues as it usually occurs in germline
cells (Figure 2a). We corroborated our proceedings by
employing the pipeline described above on two small
RNA-seq samples from human testis downloaded from
the ENCODE project. Indeed, there was a marked

preference for uridine at 5‘ ends in testis samples (Sup-
plemental Figure 2a and b), which suggest that pu-
tative piRNAs in our model are subjected to similar
mechanisms of 5‘ end formation as in germline cells.
However, the substantial difference in frequecy of 5‘-U
residues between our samples and testis samples could
be an indicative of unconserved biosynthetic steps (26 ).
In addition, no secondary piRNA production was de-
tected in any of the replicates of our samples given
that we did not found evidences of the characteristic
10 nt overlap (ping-pong signature) between 5‘ ends of
sense and antisense mapped reads (Figure 2b).

Expression of piRNAs during cardiac differen-
tiation

To study the expression profile of known piRNAs in
differentiating PSC we kept those with an average count
among replicates higher than or equal to 3. Normaliza-
tion by library depth showed equivalent distribution of
relative quantifications between samples (Supplemen-
tal Figure 3a), enabling confident identification of 447
piRNAs considering the three cell differentiation stages
investigated (Supplemental Table 2). Despite some
differences between replicates, each stage of cell differ-
entiation was categorically defined by a specif piRNA
expression profile (Supplemental Figure 3b) which was
also reflected in Principal Component Analysis results
(Supplemental Figure 3c). These identifying profiles
preferentially aggregated PSC and MPC together indi-
cating a greater resemblance between samples of these
two cell populations than with CPC.

Of the 447 identified piRNAs, 241 were expressed in
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Figure 3: piRNA expression profile in differentiating pluripotent stem cells. a) Differential expression analysis
performed on raw counts with DESeq2 package. Significantly different expression values (-1 >= log2FC >= 1; -log10p-value
> 1.30)) are represented as orange dots in the volcano plots for the three possible comparisons: MPC vs. PSC (left), CPC vs.
PSC (center) and CPC vs. MPC (right). b) Scatter plot of normalized expression data showing Pearson correlation analysis
on MPC (green dots) and CPC (red dots) versus PSC. Marginal density plots to the right denote areas of highly abundant
data and black arrows mark the positions of the most DE piRNA genes. c) Heatmap shows normalized counts of upregulated
piRNAs genes in CPC considering the three cell populations (PSC, MPC, CPC). Dendrograms resulted from running hard
unsupervised clustering algorithms on piRNA genes (left) and samples (top). d) Heatmap as in c showing downregulated
piRNA genes in CPC. e) Implementation of soft clustering algorithms (R package MFuzz) produces eight distinct patterns
(clusters 1 to 8) of piRNA expression.
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Figure 4: Expression of human PIWI genes in cardiac differentiation. a) Transcript levels of HILI (PIWIL2)
and HIWI2 (PIWIL4) were measure by qPCR in H9 pluripotent cells (D0) and H9-derived cardiac progenitors (D14). b)
Stage-specific markers were evaluated by qPCR in samples from a. Pluripotency genes are shown in the top row and genes for
cardiac lineage in the bottom. All results were expressed as mean±se of two independent experiments after normalization by
the geometric mean of RPL7 and HPRT1 housekeeping genes.

PSC, 218 in MPC and 171 in CPC (Supplemental Ta-
ble ??). Differential expression analysis revealed only
30 genes with significant shifts in RNA levels (-1 >
log2FC > 1; -log10p-value > 1.30) for the comparison
between PSC and MPC, while 137 were differentially
expressed (DE) between PSC and CPC and 153 be-
tween MPC and CPC (Figure 3a). Of the total 447
piRNAs, 204 were found to be DE with respect to CPC,
86 of which were shared by MPC and PSC (Supplemen-
tal Figure 3d and Supplemental Table 2). These results
were consistent with correlation analysis that showed
a higher Pearson coefficient for the MPC-PSC pair
(R=0.5, p<2.2e-16) than for CPC-PSC (R=-0.0062,
p=0.9) (Figure 3b), suggesting that PSC bear a greater
resemblance to MPC than to CPC not only in the iden-
tity of expressed piRNAs, but in their abundance as
well. Upregulated piRNAs accounted for 14% of to-
tal DE piRNAs in CPC (Figure 3c and Supplemental
Table 2), far fewer than the downregulated piRNAs
(Figure 3d and Supplemental Table 2). We validated
several piRNA transcripts (piR-1919272, piR-2519215
and piR-97458) by qPCR in an independent set of
samples from H9 pluripotent cells and 14 days after
the onset of cardiac differentiation, corroborating our
detection pipeline and subsequent DE analysis (Sup-
plemental Figure 4).

Differentially expressed piRNAs ranked among the
top expressing piRNAs. This is probably due to the
fact that highly expressed genes are inherently less
sensitive to inter-replicate noise, hence more likely to
return a lower p-value for contrasts. Thus, in order
to investigate potential patterns underlying expression
data which might have been masked from differential
expression analysis, we implemented a soft clustering

algorithm to data. This approach returned 8 different
patterns of piRNA expression (Figure 3e and Supple-
mental Table 3), or Expression Clusters (EC), that
reflected two dynamically relevant tendencies: down-
regulation of piRNAs towards cardiac differentiation
(cluster 1 to 4 and 7) and upregulation of piRNAs
towards cardiac differentiation (cluster 5, 6 and 8).
The former, as was previously observed, encompassed
the majority of DE piRNAs. Regardless of the con-
dition (up or downregulated) of piRNAs in CPC, it
was clear that a fraction of piRNAs sustained early
change (PSC to MPC) while others shifted later in the
differentiation process (MPC to CPC). Interestingly,
expression profile of human PIWI genes (HIWI, HILI,
HIWI2 and HIWI3 ) changed between day 0 and 14 of
differentiation (Figure 4a). While no conclusive results
were obtained for HIWI and HIWI3, HILI and HIWI2
were upregulated towards day 14 suggesting that there
might be a connection between these PIWI genes and
cardiac piRNAs. Specific markers of pluripotency and
cardiomyocytes were measure at these timepoints to
corroborate cell identity (Figure 4b). In addition, anal-
ysis of H9 and H1 published RNA-seq data validated
upregulation of HIWI2 with cardiac differentiation
(Supplemental Figure 5, (32 )).

Genome distribution of expressed piR-
NAs

Identified piRNAs were distributed rather uniformly
throughout the nuclear genome (Figure 5a), except
in chromosome Y for which no data was available
given the XX karyotype of H9 embryonic stem cells.
Moreover, Expression Clusters did not seem to follow
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any particular arrangement in these chromosomes as
well (Figure 5a, center of circular plot). Inclusion of
the mitochondrial chromosome (chrM) in the analy-
sis revealed that 90 of 447 piRNAs originated from
the mitochondrial genome (Figure 5b). This was con-
sistent with previous work in human somatic cancer
cell lines reporting the synthesis of piRNAs from mi-
tochondrial genome ((33 )). In fact, the chrM was the
major contributor of expressed piRNAs in our samples
and was mostly dominated by three EC: a) cluster
3, with piRNAs highly expressed in PSC; b) cluster
8, with piRNAs highly expressed in CPC; c) cluster
5, with piRNAs highly expressed in both PSC and
CPC.

We corroborated this finding by evaluating the dis-
tribution of mapped reads over chrM, and thus elimi-
nated the possibility of errors during counting of reads
per transcript (Supplemental Figure 6a). Despite our
pipeline for identification of expressed piRNAs filtered
out all reads that mapped to ncRNAs -other than
piRNAs- using DASHR database, 90% of mitochon-
drial piRNAs (81 out of 90) mapped directly to tRNA
and rRNA annotations (GENCODE v29) (Supplemen-
tal Figure 6b). DASHR database showed only one
annotation in chrM (LSU-rRNA) that corresponded to
the large ribosomal subunit RNR2 (Supplemental Fig-
ure 6c). This was not the case in the nuclear genome
where no piRNAs were found to map on rRNAs and
tRNAs annotated in GENCODE database (Supple-
mental Figure 6d). Nonetheless, piRNAs identified in
length-filtered data (initial step of filtering, Figure 1b)
did not map to nuclear rRNA or tRNA annotations
from GENCODE to begin with (Supplemental Figure
6d), suggesting that this step was sufficient enough to
remove reads mapping on them.

Regardless of the chromosome distribution, identi-
fied piRNAs localized preferentially on gene annota-
tions (Figure 5c). PSC samples showed that 88.5% of
piRNAs were generated from gene features, while the
percentage was higher in MPC and CPC samples, with
96.2 and 95.5% respectively.

Protein coding and lncRNA genes hosting piR-
NAs

Further analysis on genomic distribution of identified
piRNAs revealed that nearly 65% of those intersected
to gene features originated from coding (53%) and long
non-coding (12%) annotations (Suplemental Figure
5d). To test whether these events were random, we
shuffled our samples 1500 times (bootstraping) and
analyzed intersection to these features in sense and
antisense orientation. Once data was collected, we
calculated enrichment on genes as ”sample piRNAs”
over ”shuffled piRNAs” and determined that sense-
oriented piRNAs occurred non-randomly on protein
coding and long non-coding (lnc) genes (Figure 6a).
On the contrary, intersection in antisense had poor fold
enrichment values suggesting piRNAs were preferen-

tially located elsewhere. We observed similar results
for piRNAs identified in all three cell differentiation
stages studied in this work, as well as in two sam-
ples (isogenic replicates) downloaded from ENCODE
project corresponding to H1-derived neural progeni-
tor cells (NPC). Both neural samples were handled
following the same steps and criteria described before
(Supplemental Figure 7).

Taking into consideration that reads originated from
protein coding and lncRNA features might have been
the result of ordinary transcript degradation, we in-
vestigated the distribution of reads mapped on such
piRNA-hosting genes. Results showed that the percent-
age of bases covered by sense-oriented reads in these
genes was low, with a median value of 0.56% in PSC,
1.50% in MPC, 2.08% in CPC and 3.63% in NPC (Sup-
plemental Figure 8a). Moreover, coverage was localized
to a set of specific piRNAs instead of all piRbase an-
notations described in any single gene (Supplemental
Figure 8b), proving to be inconsistent with random
degradation-produced reads. Coverage by antisense-
oriented reads was closer to none (Supplemental Figure
8c) and significantly lower than sense-oriented cover-
age in all cell population except in MPC (Figure 6b),
possibly due to a higher level of dispersion in values of
these samples.

The wide majority of piRNA-hosting protein coding
and lncRNA genes harboured a single piRNA tran-
script with a tendency to augment the number of
piRNAs per gene throughout the differentiation pro-
cess (Figure 5 6c, pie charts). Like MPC and CPC,
NPC exhibited a wider spectrum of piRNAs per gene
than undifferentiated pluripotent cells (PSC). A more
detailed exploration into CPC results revealed that
MALAT1 (lncRNA gene) and TTN (protein coding
gene) contained the highest number of piRNAs -12
and 6 respectively-, followed by PLN, RPPH1, ACTC1
and AL355075.4 with 4 (Figure 5 6c, bottom panel).
Using RNA-seq data from H9 cells differentiated to CM
(32 ) we analyzed the expression profile of these piRNA-
containing genes. Transcript abundance of MALAT1,
TTN and RPPH1 increased from day 0 (PSC) to day
2/4 (MPC) and then dropped between day 4 and day
30 (CPC), in consonance with the expression dynamics
of piRNAs from EC 8 (Figure 6d). PLN and ACTC1
RNA levels increased from day 4 to day 30 practically
impervious to piRNA production, though lack of data
between day 4 and 30 hindered our analysis for these
genes (data not shown). With respect to AL355075.4
gene, we found no count data available in RNA-seq
samples. However, this gene overlaps RPPH1 in sense
orientation and it partially overlaps protein coding gene
PARP2 in antisense orientation, meaning that piRNAs
originated from it could be potentially involved in regu-
lating both genes. In fact, PARP2 expression dynamic
showed a steady descent in transcript levels from day
0 to 30, which is also consistent with the fact that
the piRNAs originated from AL355075.4 were also
detected in MPC (Supplemental Figure 8d). Similar
results were found when we studied two genes with high
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Normalized counts (FPKM) for three genes from c during differentiation of H9 cells (day 0, day 2, day 4 and day 30) to
CM. Data was extracted from previously published total RNA-seq experiments. e) Normalized counts (FPKM) for two genes
containg piRNAs in MPC.

piRNA content (>3) in MPC (Figure 6e) -APLNR and
RMRP - in which almost all piRNAs belong to EC 2.
Taken together, these evidences suggest that piRNAs
originated from these genes may be implicated in their
downregulation or possibly in a moderate fine-tuning
as in the case of PLN and ACTC1.

Functional analysis on piRNA-hosting genes in
differentiated cells

The expression profile of piRNAs proved to be suf-
ficient to clearly discriminate CPC samples not only
from PSC and MPC populations, but from neural pro-
genitors (NPC) as well. The comparison between CPC
and NPC samples revealed that 52 piRNAs were ex-

pressed in both types of differentiated cells, but more
importantly the majority were not (Figure 7a). Un-
shared piRNAs constitute a unique repertoire for each
cell population which could possibly reflect upon di-
verse functional processes. To evaluate this notion, we
extracted all protein coding genes which were inter-
sected by at least one piRNA and determined their
involvement in any biological process (BP). In search
for overrepresented terms (BPs with more genes in-
volved than expected), we found that CPC and NPC
showed markedly different terms. The BPs associated
to CPC were intimately related to heart development
and muscle differentiation and contraction (Figure 7b),
while overrepresented BPs in NPC showed a clear in-
clination towards neurogenesis regulation and neural
proliferation and development (Figure 7c). The group
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Figure 7: Functional exploration of piRNAs in differentiated cells. a) Expression profiles of piRNAs (log2 normalized
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of genes intersected by piRNAs shared by both CPC
and NPC (52 piRNAs in venn diagram) did not par-
ticipate in any of the statistically significant overrepre-
sented BPs, meaning that enriched categories for each
population are mostly based in their unique collection
of piRNAs.

Discussion

Since the first mechanistic evidences of piRNA bio-
genesis in ovarian follicle cells of D. melanogaster were
published (14 ), much information has emerged on the
somatic expression and function of this type of regula-
tory small RNAs. Several publications demonstrated
that piRNAs (or piRNA-like RNAs) originate from
discrete genomic regions of somatic cells in a wide di-
versity of species and tissues (15 , 27 , 28 , 34 , 35 ). In
agreement with this line of evidence, we report the
expression of 447 small RNAs consistent with piRNAs
among three stages of differentiation of pluripotent
stem cells to cardiomyocytes using a database-driven
approach.

The pipeline leading to the identification and quan-
tification of piRNAs involved two filtering steps that
were implemented to avoid innacurate interpretation
of results. Firstly, aligned reads shorter than 24nt and
longer than 34nt were discarded from further analyses.
However, our results showed a higher-than-basal fre-
quency of 36-37nt-long reads, which prompts the issue
if these reads should have been kept for further investi-
gation as potential longer piRNAs or perhabs remnants
of piRNA precursors. Length restriction answers to
one of the hallmark attributes of mature piRNA tran-
scripts, albeit the range seems to vary across species.
In fact, in C. elegans 21nt-long piRNAs are produced
from transcript precursors of 25-27nt in length (36 )
whose processing machinery is partially unknown. The
reason for the range diversity has been convincingly
connected to the activity of the proteins involved in
their biosynthetic pathway (biogenesis). It is possible
that they also contribute to explaining the differences
between germline and somatic piRNAs considering
that diverse sets of enzimes have been reported to
be engaged in piRNA synthesis in these cell lineages
(36 , 37 ). Moreover, the differential expression profile
of HIWI genes observed in our data -and in H9 and

9

.CC-BY-NC 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/639906doi: bioRxiv preprint 

https://doi.org/10.1101/639906
http://creativecommons.org/licenses/by-nc/4.0/


H1 external RNA-seq data- points to cell-type specific
functions for these proteins and consequently for their
piRNA partners.

In a second step, length-filtered reads mapping to
small ncRNAs other than piRNAs were removed from
samples. The fact that remaining reads in PSC and
CPC samples showed a moderate 5‘ U bias, whereas
MPC samples did not could probably be related to
the transitional nature of this cell population. How-
ever, none of the samples exhibited the characteristic
10nt-overlap signature of secondary piRNAs, which is
a generally accepted feature in germline cells of most
animals where piRNAs are synthesized through both
primary and secondary (ping-pong loop) pathways (15 ,
26 ). Despite synthesis in somatic cells has been pro-
posed to produce only primary piRNAs, many of the
mechanisms underlying piRNA biogenesis -specially
in non-gonadal tisues- are not yet fully understood.
Conceivably, the filtering steps eliminated potential
piRNAs from the three stages, though it has been ar-
gued that a considerable amount of annotated piRNAs
are actually ncRNA fragments derived from rRNAs,
tRNAs and even miRNAs (31 ). On the matter, an
insightful disscussion by Tosar and collaborators (31 ),
advocating for gonadal piRNAs, suggested that somatic
piRNAs mapping to ncRNA fragments are not unques-
tionably wrong, still further biochemical evidence is
needed to include them as such.

An important aspect of this work lies on the iden-
tification of a piRNA expression profile associated to
each of the cell populations under study. These ex-
pression profiles parallel the embryological connection
between the stages, where PSC is more closely related
to MPC than to CPC (2 , 38 ). Upon this premise, the
piRNAs identified as early-changing could potentially
be involved in maintaining pluripotency or in the com-
mitment of pluripotent cells to mesoderm progenitors,
which might eventually differentiate to multiple lin-
eages. Late-changing piRNAs, on the contrary, would
influence further commitment of mesoderm cells to
cardiac progenitors. The fact that six times more
piRNAs were downregulated rather than upregulated
during differentiation to CPC suggests that piRNA
pathways become less relevant in differentiated cells. It
is possible that mechanisms evolutionarily linked to the
regulation of transposable elements are not as critically
conserved in differentiated cells as they do in cells with
high proliferation rates or reproductive functions, such
as pluripotent cells and germ line cells. For example,
it has been proposed that cancer cells might promote
piRNA biosynthetic pathways as a mechanism to re-
duce genome instability caused by increased mitotic
and transcriptional activities (39 ).

The genomic localization of piRNAs included in any-
one particular EC was not the same. In fact, piRNA
expression appeared to be uniformly scattered across
the genome except for the mitochondrial chromosome.
The majority of piRNAs identified in the mitochondrial
genome mapped to rRNAs or tRNAs and though we

have not definitively proved they are truly piRNAs,
previous work established a link between tRNA-/rRNA-
derived piRNAs, HIWI2 expression and regulation of
metabolic processes in somatic cells (40 ). Analogously,
the increased levels of piRNAs from mitochondrial tR-
NAs/rRNAs and the significant upregulation of HIWI2
(day 14 v. day 0, and external H9 RNA-seq data) in
CPC could seemingly be connected to the large-scale
modifications in CM metabolism (41 ).

Even though identified piRNAs were dispersed
throughout the genome, it was clear that the vast
majority of them originated from gene loci. However,
it is not yet clear the reason why these piRNAs are
generated from the sense strand of their hosting genes.
One possibility relies on the capacity of PIWI/piRNA
complexes to direct recruitment of DNA and histone
methyltransferases, modifying accesibility of transcrip-
tional machinery to chromatin (25 , 42 ). Available
data of DNA or histone methylation status in the three
stages of cardiac differentiation is scarse or dissimilar,
so preliminary correlation analysis were not conclusive
at this point (data not shown). Nevertheless, further
experiments on promoter methylation and H3K9me3
mark deposition ought to be performed to pursuit this
possibility. Also, considering that antisense transcripts
have been described to positively regulate stability of
sense RNA (43 ), it is possible that sense-originated piR-
NAs regulate antisense transcript levels in a miRNA-
like mechanism. For instance, TALAM1 -an antisense
transcript at the MALAT1 gene locus- promotes sta-
bility and maturation of Malat1 RNA by facilitating
enzymatic cleavage of its 3‘ end (43 ), thus a potential
piRNA-mediated downregulation of TALAM1 would
redound to diminished MALAT1 levels.

In sum, the evidences presented here contribute to
understanding the dynamic expression of piRNAs dur-
ing differentiation of pluripotent stem cells to cardiomy-
ocytes and further explore their potential function as
post-transcriptional modulators in somatic cells. To-
gether with miRNAs, piRNAs seem to participate in
the fine-tuning of transcript levels, adding yet another
layer to the complex and intrincated networks govern-
ing gene expression.

Methods

Small RNAseq data

Data samples used in this work (PSC: H9 human
embryionic stem cells, MPC: early mesoderm progeni-
tor and CPC:cardiomyocytes) were generated in our
laboratory following previously described protocols and
are available under accession code GSE108021. Briefly,
H9 cells (H9-hTnnTZ-pGZ-D2 obtained from WiCell)
were routinely maintained in co-culture with irradiated
primary mouse embryonic fibroblasts. Mesoderm in-
duction (MPC population) was performed by initially
seeding cells with mTeSR (StemCells Technologies)
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on plates coated with Geltrex (Thermo Fisher Scien-
tific) and then switching to (2 ) StemPro®-34 SFM
(Thermo Fisher Scientific) supplemented with Activin
A only at the first day, BMP4, VEGF and bFGF
(Thermo Fisher Scientific) for 3.5 days. At this point,
mesoderm progenitors were isolated by FACS with
anti-CD326 and anti-CD56 (Biolegend). CPC popu-
lation was obtained by formation of embryoid bodies
with H9 cells using BMP4, bFGF and Activin A in
StemPro®-34 followed by addition of VEGF and Wnt
inhibitor, IWR-1. Libraries for small RNA sequencing
were prepared with 200 ng of RNA using NEBNext
Small RNA Library Prep Set with modified adaptors
and primers compatible for Illumina (New England
Biolabs). Single end sequencing was carried out at the
TCGB Resources (UCLA Path and Lab Med) using
an Illumina HiSeq 2500. Culture conditions and se-
quencing of small RNAs for these samples are more
extensively described in (11 ).

External data

Human testis small RNA-seq samples from two men
of 54 and 37 years old (GSE88414 and GSE88124,
respectively) and H1-derived neural progenitor cells
(GSM1296459 and GSM1296460) were downloaded
from ENCODE (encodeproject.org). RNA-seq data
(counts per transcript) from H1 and H9 cardiac differ-
entiation protocols can be found under GEO accesion
GSE85331.

Data processing and analyses

Adapters were removed from raw sequencing reads
with cutadapt (v1.9.1) keeping reads with a mini-
mum of 20 and up to 50 nt in length. Quality
checked (FastQC) processed reads were mapped to
human reference genome (GRCh38/hg38) using STAR
aligner (v2.5.3a (44 )) under mostly default parameters.
Mapped reads in output SAM/BAM files were filtered
by read length (23 < RL < 35) with samtools and
custom awk scripting. Resulting reads were intersected
(bedtools v2.27.1 (45 )) to ncRNAs in a strand specific
manner (DASHR (46 )) to remove potential misleading
alignments. Raw counts on piRNAs were determined
with htseq-count matching mapped reads to piRNA
coordinates downloaded from piRBase (47 ). Counts
were then fed into DESeq2 for differential expression
analysis (p<0.05 and fdr<0.1). Soft clustering methods
were implemented with R package Mfuzz (v2.42.0 (48 ))
using parameter m=1.15. In parallel to our customized
pipeline, tools for ping-pong signature detection like
ssviz R package and PingPongPro (49 ) were run fol-
lowing recommendations from authors. Graphics and
statistical analyses were performed in R software and
deepTools (50 ).

Reverse Transcription of piRNA

To obtain cDNA from piRNA transcripts we adapted
a previously described methodology employed for
miRNA detection and amplification (51 ). Briefly, stem-
loop retrotranscription (RT) primers were generated
using 6-8nt from the 3‘ end of every piRNA of interest.
Each RT reaction was performed with a maximum
of 10 different stem-loop primers including one for
RNU6B and hsa-miR-302b as controls. SuperScriptIII
retrotranscriptase (Thermo Fisher Scientific) was used
for RT reactions following guidelines from manufac-
turer. Detection by qPCR involved forward primers
matching the sequence of target piRNAs and a reverse
universal primer complementary to the stem-loop RT
primer.

Real time PCR

Total RNA was prepared with TRI-Reagent (Sigma
Aldrich) following manufacturer’s instructions and then
reverse transcribed using MMLV reverse transcrip-
tase (Promega) and random primers for detection of
polyadenilated transcripts. Quantitative real time PCR
(qPCR) was performed in a StepOne Real Time PCR
system (Applied Biosystems). Expression was normal-
ized to the geometrical mean of HPRT1 and RPL7
housekeeping genes and log2 transformed. Statistical
significance for qPCR results was analyzed by ANOVA
followed by Tukey´s multiple comparison test. Primers
sequences are available on request.
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