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Abstract 

Epilepsy is an important public health issue. An appropriate epileptiform discharge pattern 
detection of this neurological disease is a typical problem in biomedical engineering. In this paper, a 
new method is proposed for spike-and-wave discharge pattern detection based on Kendall's Tau-b 
coefficient. The proposed approach is demonstrated on a real dataset containing spike-and-wave 
discharge signals, where our performance is evaluated in terms of high Specificity, rule in (SpPIn) 
with 94% for patient-specific spike-and-wave discharge detection and 83% for a general spike-and-
wave discharge detection. 

Keywords: Spike-and-wave discharge; Kendall’s Tau-b coefficient; Electroencephalography (EEG); 
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Introduction 

Electroencephalography (EEG) is widely used to record the electrical activity of the brain in 
neurological health centers. EEGs help study and diagnose several different types of brain 
disorders, such as epilepsy. Epilepsy is a neurological disorder caused by intense activity of nerve 
cells in the brain, causing seizures. This uncontrolled electrical disturbance can cause changes in the 
levels of consciousness, behavior and body movements. A spike-and-wave discharge (SWD) is an 
epileptiform discharge with a regular and symmetric morphology, which typically starts and ends 
abruptly [1], see Figure 1. In current literature, epileptiform pattern recognition has extensive signal 
processing methods for accurate detection. Some approaches can be found using spectrogram with 
harmonic analysis [2], discrete cosine transform coupled with Daubechies wavelet [3], time-
frequency and non-linear analysis [4], spatio-temporal analysis combine with autocovariance [5], 
Hilbert-Huang transform [6], Pseudo-Wigner-Ville and Choi-William distributions followed by 
Renyi’s entropy [7], convolutional neural networks [8], statistical modeling [9, 10], bootstrap 
resampling [11], complex network of neuronal oscillators [12], or by using cross-approximate 
entropy [13]. See [14-16] for some studies in morphological similarity or concordance between 
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signals and [17] for a complete state-of-the-art about methods of automated absence seizure 
detection. 

Kendall’s Tau-b coefficient is a nonparametric correlation analysis used to measure the ordinal 
association or concordance between two measured quantities. In our case this was done with two 
morphological waveforms signals. EEG studies with this coefficient are very diverse, in [18] with 
correlational neuronal activity in sleep; in [19] to compare the quality of life in epileptic patients; in 
[20] using time series or envelopes EEG´s pairs to quantify dependence between channels were 
investigated, or in [21] where connectivity assessed by intracranial electrical stimulation was used to 
quantify and detect the association among multichannel biosignals. 

In this work we study Kendall's Tau-b coefficient between two morphological waveforms of the 
same length. The goal is to estimate the statistical relationship between a spike-and-wave 
epileptiform discharge (SWD) against each EEG segment by channel, in order to quantify and 
detect the morphological similarity or concordance between signals.  

Material and Method 

Database 

A database with 780 monopolar 256 Hz signals was created measured from ten patients from 
Fundación Lucha contra las Enfermedades Neurológicas Infantiles (FLENI). 390 spike-and-wave 
signals had different time-length and waveform but their morphology is preserved, while 390 non-
spike-and-wave signals had normal waveforms, see [9,10] for more details. In this work, only 300 
spike-and-wave signals were used, see Figure 1 and Figure 3.   

 

 

Figure 1. Spike-and-wave discharge example in an EEG channel. We can see the SWD 
epileptiform pattern between 1- 4 seconds 

SWD are restricted to a narrow frequency band between 1-3 Hz. Each EEG was acquired with 
a 22-channel array using the standard 10-20 system through the following channels: Fp1, Fp2, F7, 
F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2, Oz, FT10 and FT9, see Figure 2. 
 

  

Figure 2. Electrodes position used in this work. 

Methodology 

Let  denote the matrix assembly M EEG signals  measured 

simultaneously on different channels and at 𝑁 discrete time instants.  
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Let denote the spike-and-wave vector with length L. The proposed methodology 

was composed of four stages. The first stage splits each channel of the original signal into a set 
of N/L segments of the same sampling size of each spike-and-wave discharge without overlap. 
This segmentation was done using a rectangular sliding window, such that 
 

 

(1) 

so that  . The second stage consisted of filtering the segments   and  with a k-

point moving average filter, so that 
 

 
 

(2) 

where =  for input ; =  for input  and empirical value k=5, 

this value was chosen  in order to not to change the original waveform signal characteristics. Next, 

in third stage  and  were scaled between lower limit and upper limit   

using 
 

 
 

(3) 

where =  for input  and =  for input   

 
Finally in the fourth stage a Kendall's Tau-b coefficient was applied between the SWD pattern 

 and each  segment in order to detect a spike-and-wave epileptiform discharge pattern 
into EEG signals. We now introduce the Kendall's Tau-b coefficient used in this paper. 

Kendall's Tau-b Coefficient 

Let X be each segment filtered and scaled for each EEG channel and Y a SWD pattern filtered 

and scaled waveform, both through    and  , see equations (2) and (3). Then the bivariate 
couples  are a sample of observations of the combined random variables X  

and Y, such that all the values of   and    are unique. Two bivariate observations  and 

 are: 

● Concordant: when and , or  and  

● Discordant:  when and , or and  

● Neither concordant: when  , or  

Kendall’s Tau-b coefficient can be estimated in two ways, a) according the numbers of 

concordant  and discordant  pairs. 

 

 

(4) 

where the denominator is the total number of pair combinations, .  Or b) through the 
following expression 

 

 

 
(5) 

where 

●  Implies perfect agreement between two rankings, when  and Y are the 
same. 

●  Implies perfect disagreement between two rankings,  ranking is the reverse 

of .  
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●  Implies that   and  are independent. 

 
The statistical Kendall's Tau-b coefficient significance given by  p-value is 
 

 

 
(6) 

We refer the reader to [22,23] for a comprehensive treatment of the statistical and mathematical 
properties of Kendall’s Tau-b coefficient. 

Classifiers 

Linear discriminant, quadratic discriminant and support vector machine (SVM) are machine 
learning techniques used in pattern recognition problems in order to make predictions or decisions 
about the input data. The process of predicting the class of given input data is according to the 
targets, labels or categories during the classification stage. In our case, these learning techniques use 

the input vector  in order to predict between two classes namely: spike-and-wave and 
non-spike-and-wake, both training and classification stage. In these techniques the sensibility and 
the specificity are estimated by using the classical ROC analysis [24]. See [25] for deeper 
information about these techniques. 

Results and Discussion 

We evaluated the proposed methodology using 22 EEG monopolar 256 Hz channels of one 
patient of study during a long-time recording, and 300 spike-and-wave epileptiform discharges from 
the database presented above in subsection Database. Note that, the long-time signals were recorded 
during a sleep period of 8 hours. All the epochs of the study were selected by the physician. 
Therefore, each epoch had the beginning and end of each spike-and-wave epileptiform discharge, 
which we used as ground truth. 

For illustration, Figure 3. shows some examples of the annotated medical data (a, c, e) and 
candidates for our method (b, d, f) in blue colors with respect to the SWD pattern in red color. The 
annotated medical data was chosen in a medical context, looking at the signal in the time domain, 
see Figure 1. In (b) example, we can see the similar morphology. In (d) example a wave is detected, 
but not the spike. It is a false detection, and in (f) example a false detection is found. 

In total 3080  and p-values were estimated in 140 segments by each channel. The obtained  
and p-values for each segment per channel were corroborated with the medical annotations by 
visual inspection. Based on this analysis, a threshold= 0.5 and p-value= 0.05 were selected in order 
to perform a ROC analysis [24]. 

The threshold value was selected because values that were higher than this value were good 
candidates to be spike-and-waves, considering that the Kendall’s Tau-b coefficient is a 
nonparametric correlation analysis; and the p-value was estimated using the equation (6). Therefore,  
the Tau-b statistic value was assigned to the annotated data. Next, these were compared with the 
threshold value; and later added to the confusion matrix in order to assign a specificity and 
sensitivity metric value.  

The percentage of correct classifications was analyzed only in terms of high Specificity, rule in 
(SpPIn) [26-28], because it is known that, the patient of study has spike-and-wave discharges and in 
this preliminary study it was important to know if the proposed method detects the SWD pattern. 
The values obtained were: 14% sensitivity (True positive rate), 83% specificity (True negative rate) 
evaluated with all 300 spike-and-waves from database in 3080 segments. Specificity values range 
from 0.81 to 0.84 while sensitivity values range from 0.12 to 0.16 following a 95% confidence 
interval.  
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Figure 3. Left column are annotated medical data (a), (c) and (e). Right column are candidates for 
our method (b), (d) and (f). We can see how the EGG waveforms (blue color) have similar 

morphology with the SWD pattern (red color). In (b) example, we can see the similar morphology. 
(d) and (f) examples, are false detections. In (d) a wave is detected, but not the spike and in (f) the 

waveform is different. 

If only 10 extracted patterns from each new patient are analyzed and included into the database, 
SpPIn results improve by 11%; with 94% specificity with values ranges from 0.93 to 0.94 for the 
95% confidence interval. This presented us with our next hypothesis: spike-and-wave epileptiform 
discharge detection must be focused on patient-specific spike-and-wave detection. With this 
hypothesis, three supervised classifiers were tested with leave-one-out cross-validation technique 

from vector , obtaining the same SpPIn results (94% specificity) only with the 10 SWD 
patterns: linear discriminant, quadratic discriminant and lineal Support Vector Machine (SVM). This 
suggests that with our method is possible train a classifier and detect with a small dataset, similar to 
[29]. Our results are promising in comparison to other methods of the state-of-the-art that reports 
their SpPIn[2] by using harmonic analysis with SpPIn of 97%, or mixing the discrete cosine 
transform with Daubechies wavelets with SpPIn 90.7% [3], or applying the Morlet wavelet energy 
with SpPIn of 98.7% [30]. 

The main limitation was defining the sliding time-window and the perfect overlap of epochs 
because epileptic signals have a high dynamic. The main advantage is that, it is possible to train a 
classifier and detect with a small dataset. But this remains an open issue. 

Future work will focus on a deep evaluation of the proposed approach with a large group of 
patients: to determine the amplitude difference between signals in parallel brain regions, to estimate 
the l1-norm coupled with a filtering stage to outliers control [31], to apply an adaptive signed 
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correlation index [14], to improve the sensitivity in new patients with regularization techniques [32] 
and to tune parameters with information theory [33] or  ensembles from multiple models [34].  

Conclusions 

This work presented a new spike-and-wave detection method to detect epileptiform discharge 
patterns in EEG signals. The method is based on Kendall’s Tau-b coefficient which captures the 
statistical relationship between two waveform signals involved in the bivariate structure in order to 
quantify and detect the morphological similarity or concordance between signals. The proposed 
methodology was demonstrated on 3080 EEG segments of 300 monopolar 256 Hz spike-and-wave 
discharges database from Fundación Lucha contra las Enfermedades Neurológicas Infantiles 
(FLENI), which suggests that the proposed algorithm is a powerful tool for detecting seizures in 
epileptic signals in terms of high Specificity, rule in (SpPIn), 94% for patient-specific SWD 
detection and 83% for a general SWD detection.  

List of abbreviations 

EEG: Electroencephalography. 
SpPIn: high Specificity, rule in. 
SWD: spike-and-wave discharge. 
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