
ARTICLE IN PRESSG Model
NEURAD-943; No. of Pages 10

Journal of Neuroradiology xxx (xxxx) xxx–xxx

Available  online  at

ScienceDirect
www.sciencedirect.com

Original  Article

Brain  volumes  quantification  from  MRI  in  healthy  controls:  Assessing
correlation,  agreement  and  robustness  of  a  convolutional  neural
network-based  software  against  FreeSurfer,  CAT12  and  FSL

Hernán  Chaves a,b,∗,  Francisco  Dorr b,  Martín  Elías  Costa b,  María  Mercedes  Serra a,b,
Diego  Fernández  Slezak b,c,d,  Mauricio  F.  Farez b,e,f,g,  Gustavo  Sevlever e, Paulina  Yañez a,
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Background  and  purpose.  – There  are  instances  in which  an  estimate  of the  brain  volume  should  be
obtained  from  MRI  in  clinical  practice.  Our  objective  is to calculate  cross-sectional  robustness  of  a con-
volutional  neural  network  (CNN)  based  software  (Entelai  Pic)  for brain  volume  estimation  and  compare
it  to traditional  software  such  as FreeSurfer,  CAT12  and  FSL  in  healthy  controls  (HC).
Materials  and Methods.  – Sixteen  HC  were  scanned  four times,  two different  days  on  two  different
MRI scanners  (1.5  T  and  3  T).  Volumetric  T1-weighted  images  were  acquired  and  post-processed  with
FreeSurfer  v6.0.0,  Entelai  Pic v2,  CAT12  v12.5  and  FSL  v5.0.9.  Whole-brain,  grey  matter  (GM),  white  mat-
ter (WM)  and  cerebrospinal  fluid  (CSF)  volumes  were  calculated.  Correlation  and  agreement  between
methods  was  assessed  using  intraclass  correlation  coefficient  (ICC)  and  Bland  Altman  plots.  Robustness
was  assessed  using  the coefficient  of  variation  (CV).
Results.  –  Whole-brain  volume  estimation  had  better  correlation  between  FreeSurfer  and  Entelai  Pic (ICC
(95% CI)  0.96  (0.94−0.97))  than  FreeSurfer  and  CAT12  (0.92  (0.88−0.96))  and  FSL  (0.87  (0.79−0.91)).
WM,  GM  and  CSF  showed  a similar  trend.  Compared  to  FreeSurfer,  Entelai  Pic  provided  similarly  robust
segmentations  of  brain  volumes  both  on same-scanner  (mean  CV  1.07, range  0.20–3.13%  vs.  mean  CV

1.05,  range  0.21–3.20%,  p = 0.86)  and  on different-scanner  variables  (mean  CV  3.84,  range  2.49–5.91%  vs.
mean  CV  3.84,  range  2.62–5.13%,  p = 0.96).  Mean  post-processing  times  were  480,  5,  40  and  5  min  for
FreeSurfer,  Entelai  Pic, CAT12  and  FSL  respectively.
Conclusion.  – Based  on  robustness  and  processing  times,  our  CNN-based  model  is  suitable  for  cross-
sectional  volumetry  on clinical  practice.

©  2020  Elsevier  Masson  SAS.  All  rights  reserved.

Abbreviations: ANTs, Advanced normalization tools; BET, Brain extraction tool;
CAT, computational anatomy toolbox; CNN, convolutional neural networks; CSF,
cerebrospinal fluid; CV, coefficient of variation; DC, Dice coefficient; DDDS, different-
day different-scanner; DDSS, different-day same-scanner; FAST, FMRIB’s automated
segmentation tool; FSL, FMRIB Software Library; GM,  grey matter; HC, healthy con-
trols; ICC, intraclass correlation coefficients; MRI, magnetic resonance images; SDDS,
same-day different-scanner; SDSS, same-day same-scanner; SPM, Statistical para-
metrical mapping; WM,  white matter.
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There are many instances in which an estimate of the brain vol-
me  should be obtained from magnetic resonance images (MRI) in
linical practice (e.g.: cognitive impairment, developmental delay,
ultiple sclerosis, etc.). Even though several visual rating scales
ave been developed to provide semi quantitative measures of
he degree of atrophy, their domain is limited to specific brain
egions, subjective –prone to intra and interrater variations– and
umbersome.1
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Table  1
3D T1-WI acquisition parameters.

Scanner GE Discovery 750 Philips Achieva

Field Strength 3 T 1.5 T
Field-of-view, mm2 250  256
Number of acquisitions 1 1
Repetition time, ms  8.19 7.14
Inversion time, ms 450 –
Echo time, ms 3.2 3.4
Flip angle,◦ 12 8
Voxel size, mm 1 × 1 × 1.2 0.7 × 0.7 × 1.2
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ms:  milliseconds, wi: weighted images.

To be easily integrated in the clinical practice workflow of a radi-
ology department, brain volume quantification methods should be
fast, reliable and robust. This is why automated brain volume esti-
mation may  be the best method available to be incorporated in
clinical practice. There are several available tools for automated
brain volume estimation, and these have been tested both in
healthy subjects and patients with neurological conditions. These
tools can be broadly divided in atlas-based, To be easily integrated
in the clinical practice workflow of a radiology department, brain
volume quantification methods should be fast, reliable and robust.
This is why automated brain volume estimation may  be the best
method available to be incorporated in clinical practice. There are
several available tools for automated brain volume estimation, and
these have been tested both in healthy subjects and patients with
neurological conditions. These tools can be broadly divided in atlas-
based.2 The most commonly used software includes FreeSurfer,3

Computational Anatomy Toolbox (CAT12),4 and the FMRIB Soft-
ware Library (FSL).5

In recent years, learning-based methods –and more specifi-
cally convolutional neural networks (CNN)– have grown expo-
nentially outperforming traditional methods and human-level
performance.6,7

Our purpose is to calculate cross-sectional correlation and
robustness of a novel CNN-based software (Entelai Pic) for brain
volume estimation and compare it to traditional software such as
FreeSurfer, CAT12 and FSL in healthy controls (HC).

Material and methods

Subjects and MRI  acquisition

We  recruited 20 HC for this study. Three subjects did not show
on the day of the study. All acquired images were visually inspected
by a neuroradiologist. One subject was excluded because of an inci-
dental finding on MRI  (white matter lesions and an extra-axial
lesion). Sixteen subjects were finally included in the study. The
study was approved by the institutional review board and subjects
gave informed consent.

All subjects were scanned four times, two different days on
two MRI  scanners (Philips Achieva 1.5 T and GE Discovery 750 3 T).
Group A included 9 subjects who were scanned twice on the same
scanner on the first day and twice on the other scanner on the sec-
ond day. Group B included 7 subjects who were scanned twice on
different scanners on each day. Same-day scans were separated
by 30−60 min, different-day scans were separated by 1–3 weeks
(Fig. 1). On same-day scans, subjects were allowed to drink water
and/or use the restrooms, but they were asked not to leave the MRI
facilities.
We acquired 3D T1-weighted images without contrast admin-
istration on each scan session. MRI  sequences parameters are
summarized in Table 1. This study was approved by an ethics
committee and was performed in accordance with the ethical stan-
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ards laid down in the 1964 Declaration of Helsinki and its later
mendments. All persons gave their informed consent prior to their
nclusion in the study.

ost-processing

3D T1-weighted images were post-processed with FreeSurfer
6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. The whole-brain,
rey matter (GM), white matter (WM)  and cerebrospinal fluid (CSF)
olumes were calculated (Fig. 2). Average post-processing times
ere calculated for each segmentation software.

reeSurfer

Volumetric segmentation was performed with the Freesurfer
mage analysis suite, which is documented and freely available
or download online (http://surfer.nmr.mgh.harvard.edu/). Briefly,
his processing includes motion correction, removal of non-brain
issue, automated Talairach transformation and intensity nor-

alization for surface and intensity-based segmentation of the
ortex, subcortical white matter and deep gray matter volumetric
tructures.8 Procedures for the measurement of cortical thickness
ave been validated against histological analysis,9,10 and man-
al measurements.11,12 Segmentation was  carried out using the
tandard ‘recon-all’ command, which performs all cortical and sub-
ortical reconstruction processes. Using Python, SimpleITK and
umPy, FreeSurfer segmentation output was converted into GM,
M and CSF masks.

ntelai Pic

MRI  images are first preprocessed to reduce bias, normalize the
rightness distribution (to zero mean and unitary SD) and ensure

 homogeneous resolution (1 × 1 × 1 mm voxel size). Bias reduc-
ion is carried out using the N4BiasFieldCorrection routine from
dvanced Normalization Tools (ANTs). All remaining preprocess-

ng steps are performed using Python libraries and SimpleITK. Once
his step is completed, images are fed to a series of deep convolu-
ional networks that first separate the brain from the rest of the
kull and later produce labeled images for both cortical and sub-
ortical structures. The volume for every structure is calculated
rom these labeled images. The architecture selected for these deep
earning networks is a 20-layer 3D convolutional network with
esidual connections. This type of architecture has been shown
o be especially well suited for 3D parcellation of MRI  images
nto a large number of classes (>100).13 The models were trained

ith over 1500 visually inspected and corrected FreeSurfer masks.
raining was done using Niftynet,14 a deep learning framework
or medical images. Optimization was carried out with the Adam
lgorithm + L2 regularization. Data augmentation transformations
ncluded: scalings, rotations, flips and quadratic bias field addi-
ions.

AT12

CAT12 toolbox is a free extension to Statistical Paramet-
ical Mapping 12 (SPM12) to provide computational anatomy
http://www.neuro.uni-jena.de/). 3D T1-weighted images are
nterpolated, normalized using an affine followed by non-linear
egistration, denoised, corrected for bias field inhomogeneities,
nd then segmented into GM,  WM,  and CSF components. The seg-

entation approach is based on an AMAP (Adaptive Maximum

 Posterior) technique without the need for a priori information
n the tissue probabilities, and Partial Volume Estimation with

 simplified mixed model of a maximum of two  tissue types.15

http://surfer.nmr.mgh.harvard.edu/
http://www.neuro.uni-jena.de/
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Fig. 1. Subjects were divided in two groups and scanned on two different days. On group A, subjects were scanned on the same scanner on day 1 and on the other scanner
on  day 2. First day scans were acquired either on the Philips 1.5 T scanner (first row) or on the GE 3.0 T scanner (second row). On group B, subjects were scanned on different
scanners both on day 1 and 2. First day scan were acquired on the Philips 1.5 T scanner and GE 3.0 T scanner subsequently (third row) or on the GE 3.0 T scanner and Philips1.5 T
scanner  subsequently (fourth row).

Fig. 2. Original 3D T1-weighted images and segmentation masks from a subject obtained by FreeSurfer, FSL, Entelai Pic and CAT12. Coronal (top row), axial (middle row)
and  sagittal (bottom row) images are shown. Color coded segmentations shown include WM (green), GM (blue) and CSF (teal).
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Cross-sectional segmentation was carried out using default set-
tings, activating the option to output GM,  WM and CSF masks on
patients’ native space.

FSL

Brain tissue volume was estimated with FMRIB’s Auto-
mated Segmentation Tool (FAST), part of FSL toolbox
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Before running FAST an
image of the brain should first be extracted, using Brain Extraction
Tool (BET) from FSL toolbox. The resulting brain-only image can
then be fed into FAST. FAST starts by extracting brain and skull
images from the single whole-head input data. Next, tissue-type
segmentation with partial volume estimation is carried out with
FAST in order to calculate total volume of brain tissue (including
separate estimates of volumes of GM,  WM and CSF), whilst also
correcting for spatial intensity variations (i.e.: bias field). The
underlying method is based on a hidden Markov random field

model and an associated Expectation-Maximization algorithm.
The whole process is fully automated. We  used default processing
parameters, activating the option to output binary segmentation
images of 3 tissue classes.

b
i

Fig. 3. Graphical explanation of the four variables defined for CV estimation based on
same-scanner, DDSS (green); same-day different-scanner, SDDS (orange); and different-d
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tatistical analysis

To obtain a concurrent estimate of consistency and agreement
etween volumes derived from the different segmentation tech-
iques, we  computed intraclass correlation coefficients (ICC).16 An

CC value of 1 indicates a perfect reproducibility between two (or
ore) raters and a value of 0 or less, a reproducibility that is lower

han what is expected on the basis of chance alone. A strong corre-
ation would confirm a good consistency between techniques. ICCs

ere computed automatically specifying a two-way mixed-effect
odel.

To investigate agreement between volumes derived from differ-
nt techniques, we computed Bland–Altman plots. This graphical
ethod is used to illustrate differences in estimation between two

echniques or raters.17 Bland–Altman plots are created using the
ean of the two studied techniques as the estimation of reference.

To assess spatial agreement, we  used Dice coefficient (DC)
etween the output segmentations generated by the different
oftware, using FreeSurfer as a gold standard.18 FreeSurfer segmen-
ations were visually checked and manually corrected or excluded

y a neuroradiologist with experience in segmentation. A DC  of 1

ndicates a perfect spatial agreement between 2 segmentations.

 the MRI  acquisition design: same-day same-scanner, SDSS (red); different-day
ay different-scanner, DDDS (blue).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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The robustness (repeatability and reproducibility) of repeated
measures was assessed using the within-subject coefficient of vari-
ation (CV). CV may  be defined as the ratio of the standard deviation
of a number of measurements to the arithmetic mean.19 A software
is considered to be robust if its output is consistently accurate even
if one or more of the input variables are changed.

All the statistical analyses were performed using STATA ver-
sion 14. Group comparisons between software were tested using
the Kruskal-Wallis rank test, and in case of significant differences
among the software, post hoc paired analysis were performed using
the Wilcoxon rank-sum test. A p < 0.05 was considered statistically
significant.

Results

Subjects

Sixteen healthy subjects were included in the study (8 females
and 8 males, age range: 25–37 years, mean age = 30.4 ± 2.9 years).
Subjects reported no history of neurological or psychiatric disease.

For CV estimation, four variables were defined (Fig. 3): same-day
same-scanner (SDSS), different-day same-scanner (DDSS), same-
day different-scanner (SDDS) and different-day different-scanner
(DDDS).

Correlation and agreement of brain volumetry

There were differences in the numeric brain tissue segmentation
output from FreeSurfer, Entelai Pic, CAT12 and FSL as detailed in
Table 2.

Whole brain volume estimation had better correlation between
FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94−0.97)) than
FreeSurfer compared to CAT12 (0.92 (0.88−0.96)) and FSL (0.87
(0.79−0.91)). WM,  GM and CSF volume estimation showed a similar
trend (Table 3).

Bland-Altman plots show better agreement between whole
brain, WM,  GM and CSF volume measures obtained by FreeSurfer
and Entelai Pic, compared to the agreement between FreeSurfer
and CAT12 or FSL (Fig. 4).

Entelai Pic tissue segmentation masks had also better spatial
agreement with FreeSurfer when compared to FSL and CAT12. WM
mask had the highest (mean DC (range) 0.89 (0.77−0.94) and CSF
had the lowest (0.64 (0.45−0.80)) spatial agreement in all three
methods (Table 4 and Fig. 5). To further analyze the difference
observed in the CSF mask, we averaged the differences in CSF seg-
mentations for the three evaluated methods and our gold standard
(Fig. 6). Each method has a unique error pattern, convexal sub-
arachnoid space CSF segmentation seems clearly problematic for all
three. Ventricles segmentation was fairly similar among the three
methods when compared to the gold standard. GM masks had a
good spatial agreement for all three methods (0.84 (0.72−0.88)).
We analyzed the GM masks in the same fashion as CSF masks. Dif-
ferences were higher in the striatum, thalami and mesencephalon
for FSL and CAT12 compared to the gold standard (Fig. 7).

Robustness of brain volumetry

Mean CV for the whole brain, GM,  WM and CSF from FreeSurfer,
Entelai Pic, CAT 12 and FSL are summarized in Table 5. Whole brain
segmentation had the lowest CV among all methods, except for
Entelai Pic in which GM segmentation had the lowest CV. On the

contrary CSF segmentation was the tissue class that had the highest
CV among all methods.

FreeSurfer and Entelai Pic mean CV were very similar among
all tissue classes. CAT12, achieved the highest robustness of all in
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hole brain segmentation (mean CV 0.57) and the lowest robust-
ess of all in CSF segmentation (mean CV 9.68). CAT12 GM and
M segmentation robustness were slightly worse compared to

reeSurfer and Entelai Pic. Mean FSL CV was  higher than the other
hree methods for all tissue classes, except for CSF when compared
o CAT12. All methods CV were lowest among same-scanner (SDSS
nd DDSS) compared to different-scanner (SDDD and DDDS) vari-
bles (CV range 0.31–2.70% vs. 2.75–5.49%, p < 0.0001) (Fig. 8).

Compared to FreeSurfer, Entelai Pic provided similarly robust
egmentations of brain volumes both on same-scanner (mean
V 1.07, range 0.20–3.13% vs. mean CV 1.05, range 0.21–3.20%,

 = 0.86) and on different-scanner variables (mean CV 3.84, range
.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p = 0.96). Specifi-
ally, whole brain different-scanner CV were statistically significant
ower in FreeSurfer compared to Entelai Pic (mean CV 2.58 vs 4.27,

 = 0.0058 for SDDS and 3.42 vs 4.69, p = 0.016 for DDDS) and, on the
ther hand GM different-scanner CV were statistically significant
igher in FreeSurfer compared to Entelai Pic (mean CV 3.48 vs 1.48,

 = 0.001 for SDDS and 3.64 vs 2.02, p = 0.0013 for DDDS).

ost-processing times

Mean post-processing times for each 3D T1-WI was
80 ± 10 min  for FreeSurfer, 5 min  ± 30 s for Entelai Pic, 40 ± 2 min
or CAT12 and 15 ± 1 min  for FSL. These times were measured on

 g4dn.2xlarge Amazon Web  Services instance with GPU. Intervals
orrespond to estimates of the standard deviation for those times.

iscussion

Deep learning is a subset of machine learning that learns
epresentations of data based on models composed of multiple pro-
essing layers.20 Deep learning algorithms, and specifically CNN
odels, are starting to be applied to medical image analysis in

eneral,21 gaining an important role in the process of brain segmen-
ation in the field of neuroimaging.22 Here, we  present a CNN-based
oftware for brain tissue segmentation, and we compare it to other
ell-known traditional brain segmentation software used in the

euroimaging field such as FreeSurfer, CAT12 and FSL. FreeSurfer
s considered as one of the most accurate brain segmentation tools
hat is available and has been used as a gold standard by many
uthors as it has been proven to have a good agreement with histo-
ogic and manual measurements of cortical thickness as it has been
reviously commented. We  have also decided to use FreeSurferś
egmentations as gold standard to assess correlation, agreement
nd robustness. One of FreeSurferś most mentioned drawbacks is
hat long processing times are inevitable.23 In this regard, Entelai
ic reduced processing times in several orders of magnitude.

Multiple CNN-based methods for normal brain segmentation
ave been published in recent years.24–33 Most of these papers
nly report their performance in terms of spatial agreement. As
ur main goal was  to assess the robustness of our model, we  opted
o add a CV analysis like Guo and colleagues, after verifying for
rain volume correlation and agreement.34 As with other methods,
V was lowest among the same-scanner compared to different-
canner. As it has been previously reported, we found greater
ariability between 1.5 T and 3 T when measuring different brain
tructures.35–37 This could be due to different contrast-noise ratio
nd signal-noise ratio among volumetric acquisitions related to the
ifferent static magnetic fields on 1.5 T and 3 T scanners.38 It is also
orth mentioning the fact that the scanners were manufactured by
ifferent companies, and that the 3D T1-weighted images param-
ters were not exactly identical. However, it is difficult to estimate
hich of these factors had more weight in the observed differences.
s it has been previously proved, this variation between scanners
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Table  2
Mean ± SD of brain volume estimation (in cm3).

FreeSurfer Entelai Pic CAT12 FSL

Whole brain 1635 ± 154 1624 ± 159 1536 ± 145 1450 ± 155
Grey  matter 675 ± 61 647 ± 53 668 ± 65 639 ± 66
White  matter 524 ± 67 539 ± 60 550 ± 73 586 ± 80
CSF  436 ± 40 449 ± 46 297 ± 55 225 ± 28

CSF: cerebrospinal fluid.

Table 3
ICC (range) of WM,  GM and CSF brain volumes compared to FreeSurfer.

Entelai Pic CAT12 FSL

White matter 0.96 (0.53−0.99) 0.88 (0.24−0.97) 0.65 (-0.07−0.87)
Grey  matter 0.84 (0.38−0.94) 0.92 (0.74−0.96) 0.69 (0.23−0.87)
CSF 0.84 (0.61−0.92) 0.04 (-0.04−0.15) 0.02 (-0.01−0.15)

CSF: cerebrospinal fluid.

Fig. 4. Bland-Altman plots depicting the agreement between quantitative measurements obtained by Entelai Pic (first column), CAT12 (second column) and FSL (third
column) compared to FreeSurfer. Whole brain (first row), WM (second row), GM (third row) and CSF (fourth row) volumes comparisons are shown.

Table 4
Mean Dice coefficient (range) of WM,  GM and CSF brain volumes compared to FreeSurfer.

Entelai Pic CAT12 FSL

White matter 0.92 (0.89−0.94) 0.90 (0.88−0.92) 0.85 (0.77−0.90)
Grey matter 0.86 (0.82−0.88) 0.86 (0.83−0.88) 0.79 (0.72−0.84)
CSF  0.74 (0.69−0.80) 0.64 (0.55−0.72) 0.54 (0.45−0.61)

CSF: cerebrospinal fluid.
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Table  5
Mean (range) coefficient of variation (CV).

FreeSurfer Entelai Pic CAT12 FSL

Whole brain 1.50 (0.01−5.66) 1.99 (0.01−6.38) 0.57 (0.00−2.71) 4.14 (0.27−13.85)
Grey  matter 1.64 (0.01−6.75) 1.19 (0.00−4.48) 2.63 (0.00−10.89) 4.28 (0.01−17.88)
White matter 1.77 (0.01−5.41) 1.82 (0.00−6.03) 2.60 (0.00−12.10) 4.90 (0.12−16.06)
CSF  3.13 (0.06−12.12) 3.00 (0.01−8.9

CSF: cerebrospinal fluid.

Fig. 5. Distribution of Dice coefficients for each method and tissue type are shown
as  violin plots. Notice in every method WM Dice > GM Dice > CSF Dice. Statistically
significant differences with FreeSurfer (p < 0.05) are marked with an asterisk (*).
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Fig. 6. Average differences in CSF segmentations for the three evaluated methods (viewed
discrepancy between the segmentations of each method and our gold standard (FreeSur
marked as CSF and should be) are painted blue. Conversely, voxels that were segmented as
maps  for all sessions were registered to a reference image (in this case the first session of
though some areas are clearly problematic for all three.

7

5) 9.68 (0.00−32.26) 5.81 (0.06−16.07)

ould be partially compensated by reporting volumes normalized
o intracranial volume.34

CNN-based models have been built not only for whole brain
issues and structures segmentation. There are also deep learning
egmentation algorithms with specific purposes such as subcortical
tructures segmentation,39–42 striatum segmentation,43 or brain
entricles parcellation,44 to mention a few. Although our paper only
nalyzed the segmentation performance of our model in the main
rain tissue classes (WM,  GM and CSF), it also performs cortical and
ubcortical structures segmentation.

In their paper Moeskops and colleagues, assuming that many
atients have WM hyperintensities of presumed vascular origin,
ave included the segmentation of these lesions with a different
issue class than normal WM,  GM and CSF using a multi-scale CNN
ith FLAIR and T1-weighted images as input.26 For this paper, we

ecruited healthy controls and specifically excluded patients with
M hyperintensities, so this approach was not necessary, albeit
his method could be incorporated in future versions of our model
o make it more robust among all kind of patients.

As it has been previously mentioned, labelling 3D brain images
equires laborious efforts by expert anatomists because of the

 in coronal, axial and sagittal slices). Each voxel is colored according to the average
fer). Voxels where the method tends to undersegment (i.e.: voxels which are not

 CSF and should have been labeled as something else, are marked in red. Difference
 the first subject) before averaging. Notice each method has a unique error pattern,
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Fig. 7. Average differences in GM segmentations for the three evaluated methods (viewed in coronal, axial and sagittal slices). Each voxel is colored according to the average
discrepancy between the segmentations of each method and our gold standard (FreeSurfer). Voxels where the method tends to undersegment (i.e.: voxels which are not
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marked  as GM and should be) are painted blue. Conversely, voxels that were segmen
maps  for all sessions were registered to a reference image (in this case the first ses
FSL  and CAT12.

differences among images in terms of their noise, contrast, or
ambiguous boundaries.45 To overcome this difficulty, Ito and col-
leagues trained a deep neural network on a small number of
annotated images, but also a large number of unlabeled images
by leveraging image registration to attach pseudo-labels to images
that were originally unlabeled.30 To elude these difficulties, we
opted to train our model based only on a large number of FreeSurfer
segmentation masks that were visually checked and manually
corrected or excluded by a neuroradiologist with experience in
segmentation.

This work has some limitations. First of all, we included only
healthy patients to evaluate the performance of our brain tis-
sue segmentation model. There are many issues regarding brain
tissue segmentation in patients with WM hyperintensities of pre-
sumed vascular origin, multiple sclerosis, brain malformations or
tumors that were not contemplated in this work. Second, we  only
included adult patients. Tissue segmentation is more complex in
pediatric patients who have not reached a complete myelination,
this problem is particularly difficult to surpass in the isointense
stage (approximately 6–8 months of age) were WM and GM exhibit
almost the same level of intensity in both T1- and T2-weighted
images. Zhang and colleagues used a CNN-based method for seg-
menting isointense stage brain tissues using multi-modality MR
images.25 They showed that their CNN approach outperforms prior

methods and classical machine learning algorithms like support
vector machine and random forest classifiers. Nie and colleagues
extended the conventional CNN architectures from 2D to 3D, and
integrated coarse and dense feature maps to better model tiny

H
t
t

8

 GM and should have been labeled as something else, are marked in red. Difference
f the first subject) before averaging. Notice some areas are clearly problematic for

issue regions.33 They obtained improved results compared to
hang and colleagues.25 Third, we trained our CNN model with
euroradiologists-curated FreeSurfer masks, and we also used
reeSurfer masks as the gold standard. So, it could be expected to
nd better agreement between the segmentations produced by our
odel and the defined gold standard.

onclusions

In this paper, we developed a CNN-based model for automati-
ally segmenting brain tissues from 3D T1-weighted images, named
ntelai Pic, and analyzed its performance.

Our results show that consistent use of the same scanner is
ssential for accurate brain volume estimation with both CNN and
raditional brain segmentation software. Based on robustness and
rocessing times, our CNN-based model is particularly suitable for
ross-sectional volumetry on clinical practice.
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