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a b s t r a c t 

The application of machine learning algorithms to neuroimaging data shows great promise for the classi- 

fication of physiological and pathological brain states. However, classifiers trained on high dimensional 

data are prone to overfitting, especially for a low number of training samples. We describe the use 

of whole-brain computational models for data augmentation in brain state classification. Our low di- 

mensional model is based on nonlinear oscillators coupled by the empirical structural connectivity of 

the brain. We use this model to enhance a dataset consisting of functional magnetic resonance imag- 

ing recordings acquired during all stages of the human wake-sleep cycle. After fitting the model to the 

average functional connectivity of each state, we show that the synthetic data generated by the model 

yields classification accuracies comparable to those obtained from the empirical data. We also show that 

models fitted to individual subjects generate surrogates with enough information to train classifiers that 

present significant transfer learning accuracy to the whole sample. Whole-brain computational modeling 

represents a useful tool to produce large synthetic datasets for data augmentation in the classification 

of certain brain states, with potential applications to computer-assisted diagnosis and prognosis of neu- 

ropsychiatric disorders. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The discovery of non-invasive neuroimaging tools opened the

ay to the inference of the hidden brain states that are associ-

ted with observable behaviors. For this purpose, techniques such

s functional magnetic resonance imaging (fMRI) provide high di-

ensional spatiotemporal data that can be used as the input for

achine learning classifiers [1] . In these algorithms the parame-

ers are learned from a training sample, and the resulting accuracy

s then estimated from out-of-the-sample data. A sufficiently large

umber of examples is critical for successful training (i.e. avoid-
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ng overfitting), but the availability of neuroimaging data can be

imited for certain rare neuropsychiatric conditions and for classi-

ers aimed at distinguishing between several groups of patients.

hile pooling data acquired in different laboratories can help alle-

iate this issue, it has been shown that heterogeneous experimen-

al conditions can reduce the accuracy of the classifiers [2] . 

Data augmentation is a technique based on applying certain

ransformations to the available data with the objective of produc-

ng new surrogate training examples. In the case of image classi-

cation, for instance, these transformations may include rotations

nd shear mappings [3] . It is less obvious how to choose transfor-

ations that produce meaningful surrogate examples in the case

f high dimensional spatiotemporal data, such as that provided

y fMRI experiments. Faced with a similar problem, Tubaro and

indlin recently proposed the use of low dimensional dynamical

https://doi.org/10.1016/j.chaos.2020.110069
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110069&domain=pdf
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systems for data augmentation in deep learning [4] . Here, we have

followed the analogous procedure of developing semi-empirical

models of whole-brain activity for data augmentation in the clas-

sification of temporally extended brain states. 

The computational models we developed and implemented re-

ceive as input several independent sources of empirical data, and

can be optimized to reproduce observables derived from fMRI

recordings [5] . A low dimensional dynamical system can be as-

signed to each region within a brain parcellation, and inter-

regional coupling can be estimated from diffusion tensor imaging

(DTI) data [6] . Using the normal mode of a Hopf bifurcation results

in local dynamics with a transition from a fixed point towards a

limit cycle, and in global dynamics coupled by the density of long-

range white matter tracts [7,8] . Finally, to reduce the dimension

of the models, the local bifurcation parameters can be constrained

by different functionally coherent brain systems, known as resting

state networks (RSN) [9] . 

In the following, we show that these models reproduce the em-

pirical correlation matrices between regional fMRI time series (also

known as functional connectivity [FC] matrices), and that surro-

gate instances of FC matrices can be used for data augmentation in

the problem of classifying the different stages of the human wake-

sleep cycle. For this, synthetic time series were generated from the

low dimensional models fitted to average and individual FC, which

were used afterwards as input for multivariate random forest clas-

sifiers. 

2. Material and methods 

2.1. Participants and experimental protocol 

A cohort of 63 healthy subjects participated (36 females, mean

± SD age of 23 ± 43.3 years) with the experimental protocol ap-

proved by the local ethics committee (Goethe-Universität Frank-

furt, Germany, protocol number: 305/07). Written informed con-

sent was obtained from all participants. All experiments were con-

ducted in accordance with the relevant guidelines and regulations,

including the Declaration of Helsinki. 

Within half and hour of 7 p.m. participants entered the scan-

ner. The day of the study all participants reported a wake-up time

between 5: 00 a.m. and 11: 00 a.m., and a sleep onset time be-

tween 10: 00 p.m. and 2: 00 a.m. for the night prior to the exper-

iment. Participants were asked to relax, close their eyes and not

fight the onset of sleep and, and their resting state were simulta-

neously measured during at least 52 m with a simultaneous com-

bination of EEG and fMRI. 

2.2. Simultaneous fMRI and EEG data collection 

Electroencephalography (EEG) and electromyography (EMG)

was acquired with an optimized polysomnographic setting for

sleep staging. According to the rules of the American Academy of

Sleep Medicine [10] , the scalp potentials measured with EEG de-

termine the classification of sleep into 4 stages (wakefulness, N1,

N2 and N3 sleep). Previous publications based on this dataset can

be referenced for further details [11] . 

2.3. Structural connectivity 

Structural connectivity (SC) was obtained applying diffusion

tensor imaging (DTI) to diffusion weighted imaging (DWI) record-

ings from 16 healthy right-handed participants (11 men and 5

women, mean age: 24.75 ± 2.54 years) recruited online at Aarhus

University, Denmark. For each participant, a 90x90 SC matrix was

obtained representing the density of white matter fiber tracts be-

tween regions of interest. The connectivity probability from a seed
oxel i to another voxel j was defined as the proportion of fibers

assing through voxel i that reached voxel j (sampling of 50 0 0

treamlines per voxel) [12] . All the voxels in each region of the

utomated Anatomical Labeling atlas (AAL [13] ) were seeded (i.e.

oth grey and white matter voxels were considered). The connec-

ivity probability P ij from region i to region j was computed as the

umber of sampled fibers in region i that connected the two re-

ions, divided by 50 0 0 n , where n represents the number of vox-

ls in region i . The resulting matrices were computed as the aver-

ge across voxels within each region of interest in the AAL atlas,

hresholded at 0.1 % (i.e. a minimum of five streamlines) and nor-

alized by the number of voxels in the region. Finally, the data

as averaged across all participants. 

.4. Whole-brain models 

We implemented a network of nonlinear oscillators coupled

y the SC. The key neurobiological assumption to implement this

ind of models is that dynamics of macroscopic neural masses can

ange from fully synchronous to a stable asynchronous state gov-

rned by random fluctuations. Thus, each oscillator was modeled

sing a normal form of a Hopf bifurcation and represents the dy-

amics at each one of the 90 brain regions in the AAL atlas. In this

ype of bifurcation the qualitative nature of the solutions changes

rom a stable fixed point in phase space towards a limit cycle,

llowing the model to represent the emergence of self-sustained

scillations. We also assume that fMRI can capture the dynamics

rom both regimes with sufficient fidelity to be modeled by the

quations. 

The local dynamics of brain region j were modeled by the

omplex-valued equation: 

dz j 

dt 
= (a + iω j ) z j − z j | z j | 2 (1)

In this equation, z is a complex-valued variable ( z j = x j + iy j ),

nd ω j is the intrinsic oscillation frequency of node j . The param-

ter a is known as the bifurcation parameter, and the dynamical

cenario changes as follows as a function of a : for a > 0 a limit

ycle exists giving rise to self-sustained oscillations with frequency

f j = ω j / 2 π ; for a < 0 the phase space presents a unique stable

xed point at z j = 0 , thus the system decays asymptotically to-

ards this point [7] . In full form, the coupled differential equations

f the model coupled by a term weighted by the SC are the follow-

ng: 

dx j 

dt 
= (a + −x 2 j − y 2 j ) x j − ω j y j + G 

∑ 

C i j (x i − x j ) + βη j (2)

dy j 

dt 
= (a + −x 2 j − y 2 j ) y j + ω j x j + G 

∑ 

C i j (y i − y j ) + βη j 

Where nodes i and j were coupled by C ij (the i, j entry of the

C matrix). β j was fixed at 0.04 and represents the scaling factor

f additive gaussian noise ( ηj ) at each node. While the parameter

 represents a global factor that scales the SC equally for all the

odes to ensure oscillatory dynamics for a > 0, the obtained em-

irical SC matrix was globally scaled to a maximum of 0.2 (weak

oupling assumption). These equations were integrated to simulate

mpirical fMRI signals using the Euler-Maruyama algorithm with a

ime step of 0.1 seconds. In this model, when a is close to the bi-

urcation ( a ≈ 0) the additive gaussian noise gives rise to complex

ynamics as the system continuously switches between both sides

f the bifurcation. 

.5. Fitting the model to the empirical data 

We used the group-averaged FC as the empirical observable

o be fitted by the model. The fMRI signal from each region in
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he AAL atlas was filtered and then z-scored. The frequency range

as defined between 0 . 04 − 0 . 07 Hz since this frequency band was

hown to contain more reliable and functionally relevant informa-

ion compared to other frequency bands [14] . Afterwards, the FC

atrix was defined as the matrix containing the Pearson correla-

ion coefficients between the fMRI signals from all pairs of regions

f interest in the AAL atlas. Fixed-effect analysis was used to obtain

roup-level FC matrices, meaning that the Fisher’s R-to-z transform

 z = atanh (R ) ) was applied to the correlation values before aver-

ging across participants within each state of consciousness. For

ach brain state, participants were selected based on the presence

f uninterrupted epochs of that state lasting more than 200 sam-

les, resulting in 15 participants. 

We applied the above described model ( Eq. (2) ) to simulate re-

ional fMRI signals. First, we selected the global coupling factor

 = 0 . 5 by an exhaustive exploration of the homogeneous param-

ter space ( a, G ) around the Hopf bifurcation ( a ≈ 0) [15] . We then

ncorporated an anatomical prior based on 6 major RSN [9] with

he objective of constraining how different groups of nodes could

ontribute to the local bifurcation parameters. In this way, we em-

edded the dynamics of the 90 independent regions into a 6-

imensional parameter space. Each bifurcation parameter was con-

tructed as the linear combination of the 6 parameters associ-

ted with the RSN. Note that regions could belong to more than

ne RSN, and thus the bifurcation parameters could receive inde-

endent contributions from multiple RSN. We simulated 200 time

amples for each subject, and then repeated the procedure de-

cribed above to compute the simulated average FC matrices for

ach state. The goodness of fit (GoF) was determined by the struc-

ure similarity index (SSIM) [16] , an image similarity metric that

actors both the similarity between the image means and between

heir covariance structures. SSIM = 1 occurs when the comparison

s between two identical images and SSIM = 0 occurs when the

wo images are completely different. The optimization procedure

as based on genetic algorithms applied to infer the 6 parameters

hat maximize the goodness of fit. Further details can be found in

revious work implementing the same model [17] . 

.6. Multivariate machine learning classifiers and data augmented by 

he model 

We trained random forest classifiers [18] to distinguish sleep

rom wakefulness based on FC matrices, using a five-fold cross-

alidation procedure to estimate the accuracy. Classifiers were

rained to distinguish between wakefulness and a certain sleep

tage, and their accuracy was then tested in the classification be-

ween wakefulness and the same as well as other sleep stages (i.e.

ransfer learning accuracy). 

Random forest classifiers were implemented using scikit-learn

 https://scikit-learn.org/ ) [19] . Briefly, the random forest algorithm

uilds upon the concept of a decision tree classifier, where sam-

les are iteratively split into two branches depending on the val-

es of their features. For each feature, a threshold is introduced so

hat the samples are separated in a way that maximizes a met-

ic of the homogeneity of the class labels assigned to each branch.

he algorithm stops whenever a split results in a branch where all

he samples belong to the same class, or when all features were

lready used for a split. Since this procedure is prone to overfit-

ing, the random forest algorithm trains an ensemble of decision

rees based on a randomly chosen subset of the features, and then

omputes the label prediction as the majority vote across all the

ndividual trees. 

We trained random forest classifiers with 10 0 0 decision trees

nd a random subset of features of size equal to the (rounded)

quare root of the total number of features. The quality of each

plit in the decision trees was measured using Gini impurity, and
he individual trees were expanded until all leaves were pure (i.e.

o maximum depth). No minimum impurity decrease was en-

orced at each split, and no minimum number of samples was re-

uired at the leaf nodes of the decision trees (the classifier hyper-

arameters can be found in https://scikit-learn.org/ ). 

To assess the statistical significance of the accuracy values, we

rained and evaluated a total of 10 0 0 random forest classifiers us-

ng the same features (i.e. FC matrices) but scrambling the class

abels. We then constructed an empirical p-value by counting how

any times the accuracy of the classifier with scrambled class la-

els was greater than that of the original classifier. All accuracies

ere determined as the area under the receiver operating charac-

eristic curve (AUC). Subsequently, the generalizability of the clas-

ifiers to distinguish other sleep states from wakefulness was eval-

ated by applying both the original and scrambled classifiers, and

onstructing a p-value in a similar way. 

We repeated the aforementioned procedure using data aug-

entation, given by the output of the whole-brain computational

odel. We optimized model parameters using the average FC ma-

rices as the targets, and used these parameters to simulate 100

urrogate samples. The inclusion of additive noise in the model

ives rise to different simulated time series for each independent

un, and consequently to different FC matrices. Thus, these samples

re not independent from the original data, since they are created

y simulations with the same optimized parameters used to fit the

eal data. Nevertheless, they are transformed in a meaningful way

hat incorporates our knowledge in terms of the mechanistic ex-

lanation proportioned the model, i.e., in each brain state some re-

ions seemingly operate at the border between stability and insta-

ility ( a ≈ 0), others behave as a noisy fixed point ( a < 0), and re-

ions are connected by the structural connectivity. Thus, this pro-

edure guarantees that the generated surrogate data based on op-

imized parameters to fit one particular sleep state will represent

nformative and useful variations of this state. 

In this way, we obtained 100 synthetic samples for each stage.

ased on these surrogate samples, we trained classifiers to dis-

inguish wakefulness from sleep and measured the accuracy of

hese classifiers using the empirical data. We also determined the

ransfer learning accuracy by evaluating the performance of the

lassifiers trained with surrogate data of a certain sleep stage in

he problem of classifying empirical data corresponding to another

leep stage. Finally, we randomly selected three subjects from the

mpirical dataset and repeated this procedure using single subject

C matrices as optimization targets for the whole-brain model. 

. Results 

The procedure we followed is outlined in Fig. 1 . First, we com-

ined three different sources of empirical data to inform the com-

utational model based on coupled Hopf bifurcations ( Eq. (2) ).

hen, we trained and evaluated random forest classifiers to distin-

uish different pairs of sleep stages based on empirical and syn-

hetic fMRI data, as well as on single subject synthetic data. 

The first row of Fig. 2 shows the average empirical FC matrices

orresponding to wakefulness and the three stages of NREM sleep

N1, N2, N3). In these matrices, rows and columns correspond to

ne of the 90 regions in the AAL atlas, and the correlation coef-

cient between fMRI time series is indicated by the color scale.

he remaining rows show the FC matrices computed for three ran-

omly chosen subjects. 

Fig. 3 contains the same information computed from the syn-

hetic fMRI data. The main difference between the empirical and

imulated matrices appeared in the contradiagonal, which corre-

ponds to interhemispheric (or homotopic) connections (i.e. con-

ections between two regions symmetrically located with respect

o the midline), a difference consistent with the observation that

https://scikit-learn.org/
https://scikit-learn.org/
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Fig. 1. Outline of the procedure followed to generate the synthetic data and train the machine learning classifiers. Three sources of empirical data informed the computa- 

tional model based on coupled nonlinear oscillators ( Eq. (2) ). SC represented the coupling strength between oscillators, FC was used as the target function for parameter 

optimization with genetic algorithms, and 6 RSN determined the anatomical priors constraining local contributions to bifurcation parameters. The empirical FC was used 

both as input to the random forest classifiers (A) and as target function (B) in the optimization procedure. After this step the model generated surrogate samples to augment 

the training data. 

Fig. 2. Empirical FC matrices containing the correlation coefficients (R) between fMRI time series from all pairs of regions in the AAL atlas. The first row displays the average 

FC matrices for wakefulness, N1, N2 and N3 sleep. The other rows contain the same information for three randomly chosen individuals. 
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Fig. 3. FC matrices containing the correlation coefficients (R) between synthetic fMRI time series from all pairs of regions in the AAL atlas. The first row displays the optimal 

simulated FC matrices for wakefulness, N1, N2 and N3 sleep. The other rows contain the same information for three randomly chosen individuals. 

Table 1 

Goodness of fit (SSIM) between empirical 

and simulated FC matrices, both for the aver- 

age data and for the three individual subjects 

(S1, S2, S3). 

W N1 N2 N3 

Average 0.40 0.40 0.41 0.37 

S1 0.27 0.28 0.24 0.21 

S2 0.37 0.30 0.54 0.22 

S3 0.42 0.30 0.39 0.27 
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i  
TI tends to underestimate long-range fiber tracts [20] . In general,

he model fit was better for the average FC compared to individual

ubjects (see Table 1 ). 

Panel A of Fig. 4 shows the histograms of AUC values repre-

enting the transfer learning accuracy for random forest classifiers

rained using 100 synthetic wakefulness samples and 100 synthetic

1/N2/N3 sleep samples, and evaluated in the empirical data. Each

olumn and row indicates the sleep stage used for training and

esting, respectively. For instance, the second plot of the first row

ontains the AUC histograms obtained in the classification between

he empirical FC matrices from wakefulness and N2 sleep ( N = 15

ubjects), using the classifier trained to distinguish wakefulness

rom N1 sleep based on synthetic fMRI data ( N = 100 surrogates).

he histograms in red correspond to the AUC values obtained using

he real data, while the histograms in blue indicate the AUC values

btained after shuffling the data labels. Label shuffled is used as a

ull model to obtain the p-values shown in the insets. 

The matrices in Panel B of Fig. 4 summarize the average AUC

btained for all training-generalization pairs. It is clear from ob-

erving these matrices that machine learning classifiers presented
he highest transfer learning accuracy when generalizing between

2 and N3 sleep. This result was obtained using both synthetic

left) and empirical (right) data for training. The scatter plot com-

ares the entries of both matrices, showing a positive correlation

hich supports the similarity between the empirical and simulated

UC matrices. 

We also explored other combinations of training and testing set,

ncluding synthetic data generated with and without the ad hoc in-

lusion of the contradiagonal (i.e. homotopic structural connectiv-

ty), and a combination of empirical and synthetic data in different

roportions. These results are shown in Fig. S1 and Fig. S2 of the

upplementary Information, for the cross validation and transfer

earning, respectively. 

Fig. 5 shows that data augmentation based on single subject

C matrices can be used to train machine learning classifiers that

resent significant accuracy in the classification of wakefulness

rom N2 and N3 sleep. The rows correspond to random forest clas-

ifiers trained using data generated by computational models fit-

ed to the empirical FC of S1, S2 and S3 ( N = 100 surrogates). The

olumns indicate the sleep stage to be distinguish from wakeful-

ess. All histograms contain AUC values obtained from the evalua-

ion of these models on the empirical data ( N = 15 subjects), both

ith unshuffled (red) and shuffled (blue) class labels. The resulting

-values indicate that classifiers trained using synthetic data from

ndividual subjects can successfully generalize to the whole sample

n the classification of wakefulness vs. N2 and N3 sleep, but not vs.

1 sleep. 

. Discussion 

One of the main limitations for the training of machine learn-

ng classifiers is the amount of available data. Training is gener-
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Fig. 4. A) Histograms of AUC values for the random forest classifiers trained to distinguish wakefulness vs. the sleep stages indicated in the rows, and tested in the clas- 

sification of wakefulness vs. the sleep stages indicated in the columns. All classifiers were trained using synthetic FC matrices fitted to the average FC matrices ( N = 100 

surrogates) and evaluated using the empirical data ( N = 15 ). B) Matrices containing the average AUC values obtained for the random forest classifiers trained using the 

empirical (left) and the synthetic (right) data. Asterisks indicate statistically significant AUC values (determined by the label shuffling procedure). The scatter plot contains 

the entries of the “empirical data” vs. the “model data” matrices. 
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ally successful provided sufficient data and informative features,

but overfitting can drastically reduce generalization performance if

only few training samples are available. Data augmentation tech-

niques can attenuate this problem by introducing certain transfor-

mations (such as shear mappings rotations, in the case of images);

however, it is not clear how complex spatiotemporal data should

be transformed to create meaningful surrogate samples. Another

important application of data augmentation consists of enriching

datasets with a very small number of samples with surrogates pre-

senting sufficient variability to allow the training of machine learn-

ing classifiers. Following recently published work [4] , we showed
hat low dimensional dynamical systems fitted to empirical observ-

bles can be successfully applied for data augmentation with the

urpose of brain state classification. We note that surrogate time

eries can be produced by methods not based on dynamical sys-

ems (e.g. [21] ). However, models such as the one we employed

an represent advantages in terms of interpretation and conceptual

larity. They can also be tailored to train classifiers using synthetic

amples deviating in useful ways from the available experimental

ata. Finally, their semi-empirical nature facilitates the transition

owards the single subject level. In the following, we discuss these

dvantages in the context of the present work. 
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Fig. 5. Histograms of AUC values for random forests classifiers trained to distinguish N1, N2 and N3 from wakefulness. Classifiers were trained using synthetic FC matrices 

based on data from individual subjects ( N = 100 surrogates) and evaluated on empirical samples ( N = 15 subjects). Histograms in red correspond to data without label 

shuffling, while blue indicates AUC after label shuffling. Insets contain the mean AUC ± SD and the associated p-values. 
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The computational models we used to generate synthetic data

id not strive for biological realism, instead, we decided to fo-

us on the simplest dynamics that could present the kind of be-

avior needed to provide the classifiers with representative surro-

ates for training. Based on this data, the classifiers were capable

f inferring the optimal separation boundary between classes and

resented significant transfer accuracy for the generalization be-

ween N2 and N3, which was expected considering the high be-

avioral and physiological similarities between these stages com-

ared to N1 sleep [10] . The classifier transfer learning accuracy

atrices obtained from synthetic and empirical data were very

imilar, supporting the conceptual validity of our simple model

or whole-brain dynamics, which could be expected from previous

ork based on similar dynamics [7,8,17] . Low complexity models

an simultaneously preserve the informativeness of the surrogates

hile allowing the exploration of a small set of interpretable pa-

ameters. 

The classification of brain states based on fMRI recordings is a

romising tool for the automated diagnosis and prognosis of cer-

ain neuropsychiatric patients [22] , however, this promise is fre-

uently undermined by small sample sizes [23] . Building databases

f fMRI recordings can be costly and time consuming for diseases

hat are rare or difficult to investigate with neuroimaging. Also,

eveloping algorithms for differential diagnosis requires multilabel

lassifiers, which further reduces the number of samples per class.

 possible solution to this issue is gathering data from multiple re-

earch groups; however, different scanners and imaging sequences

an be critical confounds for machine learning classifiers [2] . As an

lternative, we proposed that adequate data augmentation tech-
iques based on computational modeling can contribute to over-

oming these limitations. We note that these are not mutually

xclusive solutions, for instance, models could be use to explore

arametrically how classifiers are confounded by factors related to

ariability in the experimental conditions. 

The outcome of our model depends upon a relatively low num-

er of parameters, which could be explored to train classifiers with

urrogate samples including perturbations that represent the hy-

othesized outcome of certain interventions. For instance, the out-

ome of surgical brain resection in certain forms of epilepsy could

e modeled by localized SC changes [24] . By artificially inducing

hese changes in the model parameters (including the structural

oupling between nodes) it could be possible to produce synthetic

ata useful to train classifiers that can be applied to estimate the

ikelihood of success after the intervention. The same logic could

e applied to other kinds of treatments, such as pharmacological

nterventions and non-invasive brain stimulation protocols, as well

s to train machine learning classifier with data that simulates spe-

ific lesions, such as those arising from stroke and traumatic brain

njury. 

We have shown that data augmentation using models fitted to

ingle subject FC matrices also allowed the classifiers to distin-

uish between wakefulness and sleep. As such, our results rep-

esent an encouraging proof of concept, but care should be ex-

rcise when attempting to generalize this result to other brain

tates. Since sleep is a physiological process and our population

onsisted of healthy participants, we expected that individual sub-

ects could provide enough information to develop classifiers accu-

ate at the group level. However, this cannot be taken for granted
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in surrogates obtained from models fitted to individual patients,

where higher inter-subject variability may arise from abnormali-

ties in brain structure and function. Since these limitations could

be informative of such abnormalities, low dimensional whole-brain

models should be further explored in the context of reproducing

single subject FC from the individual SC of the patients [25] . 

In conclusion, we have shown that dynamical systems consti-

tute a valuable tool for generating synthetic spatiotemporal data

based on a small number of examples, a tool that can be natu-

rally applied for data augmentation when training automated clas-

sifiers using fMRI data. Future work should study the possibility of

overcoming data scarcity in other systems that can be modeled by

simple dynamics, contributing to the fruitful cross-fertilization of

artificial intelligence and physics. 
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