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Abstract—This paper deals with the detection of mu-
suppression from electroencephalographic (EEG) signals in
brain-computer interface (BCI). For this purpose, an efficient
algorithm is proposed based on a statistical model and a linear
classifier. Precisely, the generalized extreme value distribution
(GEV) is proposed to represent the power spectrum density
of the EEG signal in the central motor cortex. The associated
three parameters are estimated using the maximum likelihood
method. Based on these parameters, a simple and efficient
linear classifier was designed to classify three types of events:
imagery, movement, and resting. Preliminary results show that
the proposed statistical model can be used in order to detect
precisely the mu-suppression and distinguish different EEG
events, with very good classification accuracy.

Index Terms—Motor imagery, Mu-suppression, Generalized
extreme value, Electroencephalography, Brain-computer inter-
face

I. INTRODUCTION

Electroencephalograms (EEG) are a non-invasive longstan-

ding medical modality that measures the brain’s activity by

recording the electromagnetic field at the scalp. Since its

creation, EEG has played a fundamental role in understanding

several major neurological disorders, by analyzing their ma-

nifestation into brain rhythms. For example, the study of de-

ceases such as depression, age-related cognitive deterioration,

epilepsy, anxiety disorders and subnormal brain development

in children have benefited from this technology. The typical

brain rhythms are distinguished by their different frequency

ranges, called delta (δ) within the range 0.5 to 4Hz, theta (θ)

within the range 4 to 7.5Hz, alpha (α) within the range 8

to 13Hz, beta (β) within the range 14 to 30Hz, and gamma

(γ) within the range 30 to 64Hz. In this study, we focus

on the brain rhythm called mu (µ) within the range 7.5 to

11.5Hz. Mu-waves are considered to emerge naturally and

may convey information about what the functioning of brain

hierarchies [1]. According to [2], there exist three historical

theoretical hypotheses to explaining the mu-brain rhythm: i)

the neuronal hyperexcitability related to the rolandic cortex;

ii) the superficial cortical inhibition explaining its suppression

with motor activity; and iii) the somatosensory cortical idling,

related to the afference-dependent phenomenon. This study

considers the second hypothesis, as the mu-rhythm relates

strongly to the sensorimotor cortex and associated areas, in

particular, the changes in the bilateral brain activities subject

to physical and imaginary movements [3]. Based on the same

consideration, this rhythm has been studied in brain-computer

interface (BCI) [4], [5]. The underlying idea of BCI is to

supply communication and control of devices through the

monitoring of brain activity, by using EEG channels.

The generalized extreme value (GEV) distribution is a

family that includes continuous probability distributions ob-

tained as the limit of maxima of a sequence of independent and

identically distributed random variables [6]. This distribution

has been used in [7] to detect interictal spikes in epileptic EEG

signals, using time-frequency properties. The underlying idea

was to identify strong outliers using GEV to model normalized

EEG data. In [8], showed that both EEG and MEG signals

can be correctly modeled using GEV distribution. Luca et

al. [9] used an unsupervised method to detect hyper-motor

epileptic seizures, where GEV was applied for extracting

maxima in EEG signals, using multivariate kernel density. In

[10], GEV was used to assess characteristics of Alzheimer’s

disease using EEG signals, where the variance of the power

of each frequency were used to derive an index of neuronal

abnormality. For applications in other biomedical signals see

[11].

The purpose of this paper is to present a novel and rapid

algorithm for detecting mu-suppression in EEG signals by

using the generalized extreme value distribution. The under-

lying idea is to estimate the maximum and minimum values

of the signal in the central motor cortex using statistical

modeling, for motor imagery events, corresponding to mu-

suppression. To the best of our knowledge, this statistical

model has not been investigated yet for detecting the mu-

suppression in EEG signals, despite the extensive study of

this phenomenon [12]–[14]. Several other methods have been

proposed in the literature to estimate mu-suppression in motor

imagery, see [15], [16] for a comprehensive state-of-the-art.

Table I summarizes the most common methods, such as









Fig. 6. Scatter plot example with randomized data. It is clearly possible to
use a linear classifier as imagery events (grey), the movement events (yellow),
and the resting events (blue) are well separated in the GEV parameter space.

classifier derived from the linear discriminant analysis (LDA)

was designed to distinguish between event types using these

parameters. The performance of the proposed method was

evaluated on a real dataset from 52 subjects achieving 100%

accuracy. In addition to its performance, an advantage of this

method is its low computational cost compared to existing

methods. These good results have the potential to shed new

light on mu-suppression detection in motor imagery EEG

signals in the central motor cortex.

The noise and artifacts were not taken into consideration in

this work, which constitutes its main limitation. Future work

will focus on the study of the noise and artifacts in order to

make the method applicable in real-time. A large scale testing

campaign will also be undertaken with other databases and

other possible channel locations with the idea of using the

least amount of channels possible.
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