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Abstract

Neuromyelitis optica (NMO) is a chronic inflammatory autoimmune disease of the central nervous system (CNS)
characterized by acute optic neuritis (ON) and transverse myelitis (TM). NMO is caused by a pathogenic serum IgG
antibody against the water channel aquoporin 4 (AQP4) in the majority of patients. AQP4-antibody (AQP4-ab)
presence is highly specific, and differentiates NMO from multiple sclerosis. It binds to AQP4 channels on astrocytes,
triggering activation of the classical complement cascade, causing granulocyte, eosinophil, and lymphocyte
infiltration, culminating in injury first to astrocyte, then oligodendrocytes followed by demyelination and neuronal
loss. NMO spectrum disorder (NMOSD) has recently been defined and stratified based on AQP4-ab serology status.
Most NMOSD patients experience severe relapses leading to permanent neurologic disability, making suppression
of relapse frequency and severity, the primary objective in disease management. The most common treatments
used for relapses are steroids and plasma exchange.
Currently, long-term NMOSD relapse prevention includes off-label use of immunosuppressants, particularly rituximab. In
the last 2 years however, three pivotal clinical trials have expanded the spectrum of drugs available for NMOSD
patients. Phase III studies have shown significant relapse reduction compared to placebo in AQP4-ab-positive patients
treated with satralizumab, an interleukin-6 receptor (IL-6R) inhibitor, inebilizumab, an antibody against CD19+ B cells;
and eculizumab, an antibody blocking the C5 component of complement. In light of the new evidence on NMOSD
pathophysiology and of preliminary results from ongoing trials with new drugs, we present this descriptive review,
highlighting promising treatment modalities as well as auspicious preclinical and clinical studies.
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Background
Neuromyelitis optica (NMO) is a chronic inflammatory
autoimmune disease of the central nervous system
(CNS) associated with a characteristic pattern of astro-
cyte dysfunction and loss, resulting in secondary demye-
lination and neurodegeneration [1]. Originally known as

Devic’s disease, NMO mostly follows a relapsing course,
and was long considered a severe variant of multiple
sclerosis (MS). For over 100 years, very little was known
on the pathogenesis of the disease, and evidence-based
treatments were scarce (Fig. 1) [2–13].
In 2004, discovery of a pathogenic NMO-associated

IgG antibody, targeting the water channel membrane
protein aquaporin-4 (AQP4), was an important mile-
stone in differentiating NMO from MS [4]. After varying
forms of clinical presentation were described for the dis-
ease, the term NMO spectrum disorder (NMOSD) was
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introduced in 2007 [7]. AQP4 is highly concentrated on
astrocyte end-feet in the CNS. Although pathogenic
AQP4-antibodies (AQP4-ab) are found exclusively in pa-
tients with NMO [5], approximately 20–30% of NMOSD
patients are seronegative for AQP4-ab. Up to 42% of
these AQP4-ab-negative NMOSD patients have IgG
antibodies against myelin oligodendrocyte glycoprotein
(MOG-ab) [9, 12, 14], increasingly recognized as defin-
ing an overlapping clinical syndrome, also meeting a
clinical diagnosis of NMOSD [15, 16]. Binding of AQP4-
ab to astrocyte AQP4 channels triggers classical comple-
ment cascade activation, followed by granulocyte,
eosinophil, and lymphocyte infiltration, culminating in
injury first to astrocytes, then oligodendrocytes, demye-
lination, neuronal loss, and neurodegeneration [1].
Most recently, NMOSD was defined and stratified

based on AQP4-ab serology status [10]. Additionally, six
core clinical characteristics were described, and brain
and spinal cord magnetic resonance (MRI) findings
suggestive of NMOSD were better defined [10]. Optic
neuritis ([ON]; often severe, may be bilateral), trans-
verse myelitis ([TM]; often complete and may be ac-
companied by paroxysmal tonic spasms, pruritus or
pain), and area postrema syndrome ([APS]; intractable
hiccups or nausea and vomiting) are the cardinal
symptoms of NMOSD, although some patients can
also have brain or brainstem involvement (i.e., brain-
stem syndrome, acute diencephalic syndrome and
symptomatic cerebral syndrome), which can manifest
with a variety of different symptoms [10]. In AQP4-
ab-negative NMOSD patients, the role of MOG-ab
still require further clarification [15, 16].

Although NMOSD and MOGAD are two antibody-
mediated entities, it is clear that both have different tar-
gets [9, 12, 14]. The frequency of MOG-ab and AQP4-
ab coexistence was exceptionally reported [9, 15, 16],
suggesting that both have different immunopathogenic
mechanisms. AQP4-ab-positive NMOSD is character-
ized by AQP4 loss, dystrophic astrocytes, and absence of
cortical demyelination [14–16]. By contrast, MOGAD
pathology is characterized by the coexistence of perive-
nous and confluent primary demyelination with partial
axonal preservation and reactive gliosis in the white and
gray matter, with particular abundance of intracortical
demyelinating lesions [14]. This occurs on the back-
ground of CD4-dominated T cells and granulocytic in-
flammatory infiltrates.
Contrary to classical AQP4-ab-positive NMOSD, in

MOGAD the expression of AQP4 is preserved [14].
These findings, added to the clinical and radiological
differences, clearly demonstrate that AQP4-ab-
positive NMOSD and MOGAD are two different en-
tities [14–16].
NMOSD is frequently associated with antibody-

mediated autoimmune disorders including myasthenia
gravis, lupus, Sjogren syndrome, among others [17, 18].
Myasthenia gravis coexists more frequently than ex-
pected, with NMOSD usually occurring several years
after myasthenia diagnosis [7, 18].
Immunotherapy usually used to treat MS patients, in-

cluding drugs such as interferon beta, fingolimod, natali-
zumab, and alemtuzumab, is ineffective in NMOSD
patients and may even increase annualized relapse rates
(ARR) [17]. Currently, NMOSD treatment is divided into

Fig. 1 Timeline and relevant milestones in NMOSD. During the last two decades, significant advances have been made in NMOSD, including:
introduction of new diagnostic criteria (gray arrows), identification of biomarkers, better characterization of clinical phenotypes, improved
prognosis and new therapeutic approaches (black arrows). AQP4 aquaporin-4, AQP4-ab aquaporin-4-antibodies, IgG immunoglobulin G, IPND
International Panel for NMO Diagnosis, MOG myelin-oligodendrocyte glycoprotein, NMO neuromyelitis optica, NMOSD neuromyelitis optica
spectrum disorder, TM transverse myelitis
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treatment of acute episodes, individual symptom man-
agement, and long-term relapse prevention.
Long-term relapse prevention includes treatments

based on data from retrospective observations, and pro-
spective observational studies without control groups.
The most commonly used treatments include azathio-
prine (AZA), mycophenolate (MMF), and rituximab
[18]. In the last 2 years however, four pivotal random-
ized clinical trials (RCT) have expanded the spectrum of
drugs available for NMOSD patients. Phase 3 studies
have shown significant relapse reduction compared to
placebo, in patients treated with monoclonal antibodies
against the interleukin-6 receptor ([IL-6R]; satralizumab)
[19, 20], against CD 19 present on CD19-expressing B
cells (inebilizumab) [21], and against the C5 fraction of
complement (eculizumab) [13]. This effect was particu-
larly found in AQP4-ab-positive NMOSD patients in all
three trials [13, 19, 20].
We therefore present a review on the most relevant

findings as well as the auspicious preclinical and clinical
study results, in light of additional evidence on molecu-
lar mechanisms underlying NMOSD, and ongoing trials
of new drugs for treating this condition.

Pathophysiology of neuromyelitis optica
spectrum disorders
NMOSD is an AQP4-ab-associated disease
The discovery of selective AQP4-ab binding to AQP4
changed our understanding of NMOSD pathogenesis.
What had been considered a primarily demyelinating
disease is now categorized as an autoimmune astrocyto-
pathy [1, 5]. AQP4 is a bi-directional, osmosis-driven
water channel, found at highest concentration in peri-
vascular and peripheral astrocyte endfeet, as well as in
ependymal cell membranes [22]. In humans, AQP4
monomers are expressed in astrocytes in two isoforms:
M1-AQP4 and M23-AQP4. Both isoforms have identical
extracellular domain residues, but M1-AQP4 has 22
more amino acids at the cytoplasmic N terminus. How-
ever, AQP4-ab binding to the ectodomain of astrocytic
AQP4 has isoform-specific outcomes. M1-AQP4 is com-
pletely internalized, whereas M23-AQP4 resists internal-
ization and is aggregated into larger-order orthogonal
arrays of particles (OAPs) [23], a process facilitated by
M1-AQP4 deficiency. OAP function under physiological
conditions is still unknown. However, alteration in OAP
assemblies have been reported in several CNS diseases,
and are required for NMO-IgG to recognize conform-
ational AQP4 epitopes [24]. OAPs may also be critical
for binding of the complement component C1q, to clus-
tered AQP4-ab [25, 26].
Neuropathological, clinical, and animal studies provide

evidence of a role of AQP4-ab, in NMOSD pathogenesis.
CNS lesions in NMOSD patients are characterized by

IgG, IgM, and complement deposits with a rosette pat-
tern, most prominent around vessels, as well as cellular
infiltrates of granulocytes (neutrophils and eosinophils)
macrophages/microglia and T cells [27]. One key feature
is AQP4 loss on astrocytes. In certain lesions however,
other typical astrocytic markers, such as glial fibrillary
acidic protein (GFAP) and S-100β, are still detectable,
indicating AQP4 loss precedes astrocyte death [27, 28].
Ultimately, preservation or secondary loss of neurons
and associated demyelination will depend on disease sever-
ity. Demyelination affects both gray and white matter,
sometimes with necrosis and cavitation, and thickened,
hyalinized vessels [27, 29]. These findings suggest the auto-
immune response in NMOSD primarily affects astrocytes
and is initiated by autoantibody-mediated loss of AQP4.
Clinical observations also support the hypothesis that

AQP4-ab cause NMOSD and are highly specific [7, 25].
They can be detected in sera of most patients [25, 30],
and levels of both AQP4-ab and AQP4-ab–producing
plasmablasts correlate with disease activity [25, 30–32].
In addition, AQP4-ab presence may predict future re-
lapses [33, 34]. Although AQP4-ab thresholds triggering
clinical relapses have not been established, and serum
levels show wide variations both in individual patients
and between patients, lesion distribution tends to correl-
ate with areas of highest AQP4 expression and blood-
brain barrier (BBB) permeability (e.g., area postrema) [7,
35, 36]. Another indirect sign pointing to the role of
AQP4-ab-related disease mechanisms comes from the
success of therapeutic strategies targeting humoral im-
mune responses, such as plasma exchange [37, 38], or
use of B-cell depleting therapies like rituximab [39, 40].
Further evidence has been observed in animal experi-

ments. No animal models replicating spontaneous AQP4
autoimmunity exist. However, passive intravenous [41]
or intraperitoneal transfer [42] of purified AQP4-ab
from NMOSD patients and of human complement to
rodents causes early AQP4 loss and astrocyte cytotox-
icity, identical pathological features to those found in
NMOSD [41, 42].
Growing evidence indicates AQP4-ab are synthetized

peripherally, rather than intrathecally, subsequently en-
tering the CNS through a disrupted BBB [25, 33]. Few
NMOSD cases show AQP4-ab exclusively in CSF [43].
In line with this assumption AQP4-ab-plasmablasts are
selectively increased in NMOSD patients, and main-
tained by elevated levels of IL-6 [44]. It has been postu-
lated that AQP4-ab require an inflammatory background
and BBB disruption, to induce CNS lesions [45]. Indeed,
relative high levels of AQP4-ab are detected in many pa-
tients, even during remission [31]. Other evidence has
indicated an inflammatory environment may not always
be necessary for AQP4-ab to cross the BBB [46], as they
may enter the CNS via circumventricular organs with
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fenestrated capillaries, or through blood vessels in the
meninges or parenchyma [47]. AQP4-ab itself could in-
duce direct damage to the BBB, since astrocytic endfeet
is a constitutive element of the BBB [42].

The role of B cells and plasma cells, in NMOSD
The pathogenic role of AQP4-ab highlights the import-
ance of B cells and plasma cells in NMOSD [48, 49].
CD19intCD27highCD38highCD180− B cells are selectively
expanded in peripheral blood of patients. These cells
have the phenotypic features of plasmablasts, and secrete
AQP4-ab following IL-6 stimulation [50]. Notably, B
cells found in CSF of NMOSD patients display signals of
somatic B cell hypermutation, indicative of antigen rec-
ognition within the CNS. Similarly, elevated levels of B
cell activating factor (BAFF), proliferation-inducing lig-
and (APRIL), CXCL13, and IL-6 are all found in CSF
from NMOSD patients, likely exerting a critical role in
AQP4-ab-producing cell recruitment and maintenance
[51, 52]. Interestingly, eosinophils infiltrating the CNS
(see below) may facilitate plasma cell survival and
AQP4-ab production, through production of APRIL, IL-
6, and IL-5 [48]. B cell contribution to NMOSD patho-
genesis, however, may extend beyond the production of
AQP4-ab. B cells could also play a critical role as antigen
presenting cells for development of follicular effector T
cells, which participate in B cell differentiation and iso-
type switching [53, 54], closing a positive feedback loop
of potentially pathogenic B and T cell interaction. Fur-
thermore, bystander activation may also result in pro-
duction of B cell cytokines promoting NMOSD activity,
including IL-6, TNF-α, and GM-CSF. IL-6 secretion by
pro-inflammatory memory B cells in NMOSD may in-
crease disease activity through different mechanisms,
namely by (i) promoting plasmablast survival, (ii)
stimulating AQP4-ab production, (iii) disrupting BBB
integrity, and (iv) promoting pathogenic Th17 cell
differentiation [55]. Lastly, a decrease in regulatory B cell
numbers may impair function or reduce levels of IL-10,
also worsening disease [56], although this mechanism
needs further study.

T cells and NMOSD
AQP4-ab in NMO serum are IgG1, a subclass of mature
IgG that requires help from T cells, indicating that
AQP4-specific CD4+ T cells participate in the genesis of
this adaptive humoral response [57]. Paucity of T cells in
NMOSD lesions probably indicates they are not directly
involved in lesion formation [25]. However, several ob-
servations show that T cells may act in the periphery
disrupting tolerance and contributing to AQP4-ab
production [25, 58]. Peripheral blood T cells from NMO
patients and healthy controls proliferate in response to
intact AQP4 and AQP4 peptides, with a robust T cell

response in NMOSD patients to p61–80 [57]. Interest-
ingly, AQP4 63–76 peptide contains the predicted bind-
ing motif for HLA-DRB1*0301 and HLA-DRB3*0202,
two haplotypes overrepresented in some NMOSD popu-
lations [59, 60]. Several studies have shown that AQP4
antigenic stimulation polarizes the immune response to-
ward a Th17 repertoire, and to secretion of Th17-
associated cytokines such as IL-6 and IL-21 [61]. Th17
cells may compromise BBB integrity via IL-17 secretion,
promoting endothelial activation, and stimulating trans-
endothelial migration of neutrophils [62]. Meanwhile, in-
creased CSF levels of IL-6 in NMOSD patients may
favor survival of AQP4-specific Th17 cells, and inhibit
FOXP3+ regulatory T cells at the same time [63].
Collectively, these observations highlight the potential
role of AQP4-specific T cells as drivers of adaptive
humoral as well as cellular immune responses in NMO
pathogenesis.

Innate immunity in NMOSD
AQP4-ab binds to extracellular epitopes of AQP4
present on the astrocyte plasma membrane. This triggers
astrocyte injury through complement-dependent cytotox-
icity (CDC) and antibody-dependent cellular cytotoxicity
(ADCC). In CDC, classical pathway activation begins
when the multivalent protein C1q, binds to the conform-
ational Fc determinant on IgG or IgM antibody–antigen
complexes, producing cellular injury by formation of a
pore-like membrane attack complex (MAC) [64]. In
addition to MAC formation, complement activation
produces factors C3a and C5a, which increase vascular
permeability and provide a chemotactic gradient, resulting
in recruitment of immune effector cells through the BBB,
including neutrophils, basophils, eosinophils, mast cells,
and macrophages [65]. Increased numbers of both neutro-
phils and eosinophils are found in the CSF of NMOSD pa-
tients [66], as well as in autopsy cases of NMO [29]. In
ADCC, binding of neutrophils, macrophages, and NK cells
to the Fc region of AQP4-ab, through Fcγ receptors,
causes activation and degranulation, resulting in NMOSD
lesions [67]. Both mechanisms may also cause cytotoxicity
to nearby cells including oligodendrocytes and neurons,
through bystander mechanisms [68, 69]. The role of com-
plement in NMOSD pathogenesis is highlighted by the
demonstration of pronounced perivascular deposition of
immunoglobulins, mainly IgM, and complement C9neo
antigen (the residual component of MAC), in active
demyelinating lesions associated with prominent vascular
fibrosis and hyalinization, both in active and inactive
lesions [29].
Without complement, astrocytic membranes remain

intact, but AQP4 is endocytosed with concomitant loss
of Na+-dependent glutamate transport and loss of the
excitatory amino acid transporter 2 (EAAT2), suggesting
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that EAAT2 and AQP4 exist in astrocytic membranes as
a macromolecular complex. Impairment in glutamater-
gic homeostasis may contribute to neurotoxic events
that lead to neuronal death, oligodendrocyte dysfunc-
tion, and consequent demyelination [70].
In addition to decrease in AQP4, loss of astrocytes,

neuronal injury, and demyelination, microglia activation
and macrophage infiltration are also prominent in
NMOSD. Microglia/macrophage distribution is confined
to regions with high expression of AQP4, surrounded by
signs of complement activation [71]. The potential role
of microglia activation in NMOSD has been recently
studied in an animal model. AQP4-ab is known to elicit
significant production of complement fraction C3 by as-
trocytes [72], and microglia express C3a receptor. There-
fore, astrocytes can promote microglia activation through
C3a, particularly during the pre-cytolytic phase [73].
Microglia activation also induces production of comple-
ment C1q, which in turn can promote axonal damage and
neurodegeneration, independent of complement [74, 75].
Studies in experimental animal models as well as in

human NMOSD lesions show polymorphonuclear leu-
kocytes (PMNs) as the key determinants of BBB perme-
ability and NMOSD lesion formation. Indeed, depletion
of blood PMNs significantly reduces BBB disruption, a
finding that has been confirmed in vivo using marked
albumin tracer [76].
CSF neutrophil counts are elevated in about 60% of

untreated NMOSD patients during relapses, but in only
20% during remission [66]. One study showed NMO
patient sera contained elevated levels of neutrophil
chemo-attractants CXCL5 and CXCL8, and the neutro-
phil protease, elastase [77]. In an NMO mouse model,
tissue damage was dampened by neutrophil depletion
and enhanced by neutrophil increase [78]. Immunostain-
ing for neutrophil elastase (NE) showed perivascular
neutrophils were degranulated, suggesting those circulat-
ing and entering the CNS, participated in NMOSD le-
sion development, through NE–dependent mechanisms.
Furthermore, sivelestat, a small-molecule NE inhibitor,
reduced disease severity [78].
One striking feature of active NMO lesions in the

spinal cord is intense perivascular and meningeal infil-
tration of eosinophils, as well as of CCR3, the principal
receptor for the chemokine eotaxin, and a potent
eosinophil chemo-attractant [29]. Once activated,
eosinophils release several cytotoxic proteins including
eosinophil cationic protein (ECP), eosinophil-derived
neurotoxin (EDN), eosinophil peroxidase (EPX), and
major basic protein (MBP) [79].
Cerebrospinal fluid from patients with NMO contains

higher levels of eotaxin-2, eotaxin-3, and ECP compared
to healthy controls or multiple sclerosis patients [52]. In
addition, stimulation of CSF cells from NMO patients

with MOG results in increased IL-5 production [52].
Taken together, these observations indicate eosinophils
can cause neural tissue damage in NMO, through ADCC
and degranulation. The main pathological mechanisms
involved in NMOSD are summarized in Fig. 2.

Treatment of neuromyelitis optica spectrum
disorders
For decades, NMOSD treatment has been based on
retrospective case series and consensus guidelines. Better
knowledge of underlying disease mechanisms has
allowed the identification of new therapeutic targets.
Results from RCT targeting different pathways have
been recently published, providing Class I evidence for
use of different monoclonal antibodies [13, 19–21, 40,
80]. Additional therapies in development or undergoing
trials for NMOSD have arisen as a result of improve-
ments in our understanding of the pathogenesis of the
disease.

Past and present treatments for acute disease phases
Acute treatment is critically important in NMOSD as
exacerbations result in severe residual disability. There-
fore, relapse therapies should be started early and ag-
gressively [18]. Acute treatment objectives include
suppressing acute inflammatory attacks, restricting CNS
damage, and improving long-term neurological function.
Relapses are commonly treated with high-dose IV

methylprednisolone (IVMP) 1 g/daily for 3–7 days,
followed by tapered oral steroids [81]. Complete recov-
ery after relapse has been observed in up to 35% of pa-
tients treated with IVMP [82, 83]. Timing is critical,
IVMP within 5 days of AQP4 ON onset increases
complete visual acuity (VA) recovery compared to start-
ing later [84].
Plasma exchange (PLEX) every other day for 2 weeks

(1.5 L volume, 5–7 treatments) or immunoadsorption
are recommended within 5 days from NMOSD relapse
onset, when response to IVMP is poor or absent [18].
PLEX can also be administered as first line therapy or
simultaneously with IVMP in severe cases. In serious
TM relapses, early PLEX was linked to full recovery
compared to high-dose steroids (OR = 4.38, p = 0.006)
[85]. Similarly, time from relapse onset to start of PLEX
was a robust predictor of complete remission (40%
within 2 days of symptom onset vs. 3.2% after 6 days)
[84]. Moreover, 51% of patients treated with IVMP for 5
days followed by PLEX, recovered pre-relapse baseline
status, compared with 16.6% of patients treated only
with IVMP [82]. Degree of recovery decreased from 50%
when PLEX was given immediately, to 1–5% when
started after day 20, emphasizing the importance of early
treatment [86]. If response is poor, IV immunoglobulin-
G therapy (IVIgG) can be used. In a retrospective study
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on 10 NMOSD patients unresponsive to IVMP, IVIgG
was effective in 50% of patients [87]. Unfortunately, a
multicenter, single-blind, parallel-group, RCT on IVIG
compared to standard therapy for TM treatment in
adults and children (STRIVE study [NCT02398994]) was
discontinued due to difficulties recruiting patients [88].
Recently, a retrospective study reported high-dose IVMP
plus IVIgG was superior to high-dose of IVMP alone
[89]. Further studies will be needed to confirm these
findings.

Future treatments for acute disease
New therapies for acute NMOSD relapses, including
bevacizumab, ublituximab, NPB-1, and HBM9161, are
currently under investigation. Mechanism of action,
doses used, and RCT results observed with these treat-
ments are summarized in Tables 1 and 2.
IV bevacizumab was evaluated in a phase 1b trial, as

add-on therapy for treatment of ON and/or TM in
NMOSD. Bevacizumab, an anti-angiogenic compound,
which can restore the BBB proved effective and safe in

Fig. 2 Pathophysiologic mechanisms and therapeutic targets for approved and experimental treatment options in NMOSD. AQP4-specific B cells
differentiate in the periphery to plasma cells capable of producing anti-AQP4 antibodies (1), which penetrate the CNS and are deposited mainly
on the feet of astrocytes. Specific T cells interact with B cells or dendritic cells, and in the presence of IL-6, IL-23, and TGF-β differentiate into Th17
cells. These in turn penetrate the CNS, facilitate the passage of AQP4-ab into the CNS via opening the blood brain barrier (BBB), and contribute to
the recruitment of neutrophils (2). This inflammatory environment activates complement through C1q which binds to anti-AQP4-ab, induces C5
cleavage into activated fractions C5a and C5b, causing astrocyte injury through complement-dependent cytotoxicity (CDC) and antibody-
dependent cellular cytotoxicity (ADCC). When C1q binds to conformational Fc determinants on IgG or IgM antibody–antigen complexes, it
produces cellular injury by formation of the pore-like membrane attack complex (MAC) (3). In addition to MAC formation, complement activation
produces factors C3a and C5a, which together with VEGF increase vascular permeability and provide a chemotactic gradient, resulting in
recruitment of neutrophils, eosinophils, basophils, mast cells, NK cells and macrophages (4). These cells produce complement-independent
damage of astrocytes through ADCC or degranulation involving Fc receptors. Mechanisms described above may also generate cytotoxicity in
neighboring cells including oligodendrocytes and neurons through bystander effects (5). Experimental treatments or those in ongoing studies are
represented in dotted line spaces. AQP4 aquaporin-4, CCP cytotoxic cationic proteins, IL interleukin, NE neutrophil elastase, NOS nitric oxide
species, VEGF vascular endothelial growth factor
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Table 1 Mechanism of action of on-label and off-label therapies, and drugs in clinical trials used in the treatment of NMOSD

Acute treatment: future era

Drug/Dose/Route of administration

Bevacizumab [90]
intravenous infusion
10 mg/kg intravenous infusion at onset of exacerbation and, if
needed, a second time during the plasma exchange phase

Bevacizumab directly binds vascular endothelial growth factor (VEGF) to inhibit
angiogenesis

Ublituximab [91, 92]
Intravenous
450 mg once on day 1, plus steroids 1000 mg intravenously daily
on days 1–5

Ublituximab is a monoclonal antibody that specifically binds to the trans-
membrane antigen CD20. Binding induces an immune response that causes lysis
of B cells.

NPB-01 (NCT01845584)
Intravenous immunoglobulin 400 mg/kg/day for five consecutive
days

IgG can inactivate auto-reactive T-cells by competing for, and interrupting their
interaction with, antigen presenting cells [87, 88].

HBM 9161 (NCT04227470)
injection, 340 mg or 680 mg weekly administered subcutaneously
for a period of 4 weeks.

HBM9161(HL161BKN) is a human monoclonal antibody. HBM9161 targets FcRn
by blocking the FcRn IgG-Fc binding site and accelerating the degradation of
IgG, reducing total IgG level in blood (including pathological IgG). The serum
AQP4-IgG associated with NMOSD is a pathological IgG, so the combination of
standard of care which is intravenous methylprednisolone with HBM9161 is ex-
pected to rapidly reduce AQP4-IgG levels.

Long-term relapse prevention treatment: old era

Azathioprine (AZA) [93–96]
Oral
Target dose: 2–3 mg/kg/daily in divided doses

Purine analog that converts to 6-mercaptopurine, its active metabolite, and thio-
guanine due to the action of hypoxanthine-guanine phosphoribosyl transferase
and thiopurine methyltransferase enzymes. Inhibits purine synthesis resulting in
the inhibition of DNA, RNA, and protein synthesis. AZA is absorbed rapidly
through the GI system and does not penetrate the blood-brain barrier.

Mycofenolate mofetil (MMF) [97–99]
Oral
Target dose: 750–1500 mg twice a day (median dose: 1 g twice a
day)

Prodrug of mycophenolic acid, an inhibitor of inosine-5'-monophosphate de-
hydrogenase (antimetabolite), which is the first of two enzymes involved in the
conversion of inosine monophosphate (IMP) to guanosine monophosphate
(GMP). It is normally converted to GDP, GTP, and dGTP. Mycophenolic acid treat-
ment decreases guanine nucleotide pools in lymphocytes.

Rituximab (RTX) [100–106]
Intravenous
Induction: 1 g with re-treatment at 2 weeks or 375 mg/m2 body
surface area once weekly for 4 weeks.
Maintenance: 1 g with retreatment at 2 weeks every 6 mo. or one
infusion of 375 mg/m2 every 6 mo.

Chimeric monoclonal antibody (IgG1) against human CD20. Its binds to CD20, a
protein expressed primarily on B cells (pre-B, naïve and memory B cells),
reducing B cell activity (elimination of autoreactive B cell) through subsequent
cytotoxic mechanisms, inducing regulatory B cells.

Tocilizumab (TCZ) [80, 107–109]
Intravenous
8 mg/kg every 4 weeks

Humanized monoclonal antibody (IgG1) genetically engineered from mouse
antihuman anti-interleukin 6 receptor (IL-6R) antibody. It recognizes the IL-6 bind-
ing site of the human IL-6R and inhibits IL-6 signaling through competitive block-
ade of the IL-6 binding site (membrane-bound and soluble IL-6 receptors)

Long-term relapse prevention treatment: present Era

Eculizumab (ECZ) [13]
Intravenous
900 mg weekly during the first four doses starting on day 1,
followed by 1200 mg every 2 weeks starting at week 4.

Humanized monoclonal antibody (IgG2/IgG4) inhibiting terminal complement
protein C5 by preventing cleavage from C5 to activated fractions C5a (pro-
inflammatory peptide involved in chemotaxis, cytokine release and vasodilation)
and C5b (a membrane constituent which attacks complex C5b-9).

Satralizumab [19, 20]
Subcutaneous
120 mg at weeks 0, 2, and 4 and then every 4 weeks

Humanized IL-6R monoclonal antibody type IgG2 (recycling technology). Binds
to membrane IL-6R and is internalized in the endosome. It can dissociate IL-6R
under acidic conditions in lysosomes and be recycled to the plasma via the neo-
natal Fc receptor (FcRn) instead of being degraded in lysosomes.

Inebilizumab [21]
Intravenous
300 mg in 2 doses on open-label days 1 and 15 and then 300 mg
every 6 mo.

Humanized monoclonal antibody (IgG1) against CD19 (pro-B, pre-B, naïve and
memory B cells), which produces rapid depletion of circulating B cells, including
autoantibody-secreting plasmablasts and CD19-expressing plasma cells. CD19 is
exclusively expressed on B cells.

Long-term relapse prevention treatment: future era

Telitacicept
Subcutaneous
160 mg weekly

Recombinant transmembrane activator and calcium modulator and cyclophilin
ligand interactor (TACI-Fc; located on CD27+ memory B cells and plasma cells)
fusion antibody that works by binding to two cell-signaling molecules, B lympho-
cyte stimulator (BLyS), and a proliferation-inducing ligand (APRIL), both are a
member of the tumor necrosis factor (TNF) family [115].
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10 patients, with none requiring escalation to PLEX after
high-dose IVMP plus IV bevacizumab, suggesting that
this is a potent combination [90]. Ublituximab (LFB-
R603) is a monoclonal antibody specifically binding to
the trans-membrane antigen CD20, shortening infusion

duration and lowering doses compared to other anti-
CD20 monoclonal antibodies [91]. In a phase 1 open-
label study to assess safety of acute B cell depletion in
NMOSD patients with ON or TM relapses, patients re-
ceived IV ublituximab at relapse onset plus high-dose of

Table 1 Mechanism of action of on-label and off-label therapies, and drugs in clinical trials used in the treatment of NMOSD
(Continued)

Acute treatment: future era

Drug/Dose/Route of administration

Ravulizumab
Intravenous
Infusion on day 1, followed by weight-based maintenance doses
on day 15, then once every 8 weeks

Second-generation anti-C5 monoclonal antibody (binds to complement protein
5 (C5) and blocks its activation by complement pathway convertase, thus inhibit-
ing C5 cleavage into fragments C5a and C5b, engineered from eculizumab. It is a
long-lasting recycling IgG monoclonal antibody with increased affinity for FcRn
and rapid endosomal dissociation of the ravulizumab-C5 complex, allowing lyso-
somal degradation of C5 while recycling ravulizumab to the vascular space
through the FcRn [113].

Bortezomib [114]
Subcutaneous
1 mg/m2 of body surface area on days 1, 4, 8, and 11 per cycle
followed by a 10-day treatment-free interval.

Binds the catalytic site of the 26S proteasome with high affinity and specificity
leading to elimination of both plasmablasts and plasma cells by activation of the
unfolded terminal protein response. Bortezomib may protect astrocytes from
NFκB-dependent inflammatory damage in early events in NMOSD pathogenesis.

Cetirizine (add-on) [115]
Oral
10 mg each day

Cetirizine (antihistaminic) could prevent damage by blocking eosinophils which
have been implicated in the pathophysiology of NMOSD.

BAT4406F
Intravenous
Open-label dose escalation starting from 20 mg.

Fully humanized anti-CD20 monoclonal antibody

SHR1459
Oral
Tablets taken once daily

Bruton’s tyrosine kinase (BTK) inhibitor. BTK plays a crucial role in B cell
development by transmitting intracellular signals from the pre-B cell receptor

Precinical study

Aquaporumab (mAb-53) (animal model) [119]
mAb-53 has not been clinically applied to patients

Aquaporumab is an engineered monoclonal antibody with high affinity for AQP4
channels that contain Fc mutations blocking cell- and complement-mediated
cytotoxicity effector functions (possible mechanism of competitive inhibition as a
steric inhibitor). Aquaporumab has shown beneficial effects in an NMOSD mouse
model, but has not been clinically tested in NMOSD patients.

Table 2 Therapeutic options for NMOSD-related relapses
Drug Study design Study phase /

ClinicalTrials.gov
Identifier(status 01/
2021)

Number of
patients
(randomization)

NMOSD
serostatus

Follow-up Disability (EDSS
stabilization or
improvement)

Safety concerns

Bevacizumab Single-center, Open
Label Trial (USA)

Phase 1 add-on ther-
apy (completed)
NCT01777412

10 AQP4-ab +
(n = 6) and
– (n = 4)

91 days after
admission

at baseline: 3.5 (2–
7)
at FU: 3 (1.75–6.5)

UTI that required
hospitalization and
improved with specific
Tx

Ublituximab Single-center, Open
Label Trial (USA)

Phase 1 add-on ther-
apy (completed)
NCT02276963

6 (5 completed
the study)

AQP4-ab + 90 days after
admission

at baseline: 6.5
(5.25-7.5)
at FU (n = 3): 4
(2–8)

Leukopenia (n = 1)
headache and body
ache (n = 3)

NPB-01 Single-center, Open
Label Trial (Japan)

Phase 2 add-on ther-
apy (completed)
NCT01845584

7 AQP4-ab + Time frame: 29
days

NA NA

HBM 9161 Non-randomized, open
label, dose exploration
study (China)

Phase 3 study
(Active, recruiting)
NCT04227470

12 (estimated
enrollment)

AQP4-ab + Time frame: 189
days

NA NA

Immunoadsorption
or Plasma
Exchange

Prospective,
Multicenter, Single-
blind, Randomized
study (China)

Phase 2 study (not yet
recruiting)
NCT04064944

144 (estimated
enrollment)

AQP4-ab + Time frame: 4
weeks after the
last treatment

NA NA

FU follow-up, NA not available, USA United States of America, AQP4-ab + aquaporin-4 antibodies positive, NMOSD neuromyelitis optica spectrum disorders, EDSS
Expanded disability Status Scale, UTI urinary tract infection
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IVMP for 5 days. Ublituximab proved to be safe in all 5
patients and 4 of 5 showed improved disability scores
[92]. Subcutaneous injection of HBM9161 is being evalu-
ated in a phase 1, open-label dose exploration study, in-
vestigating safety/tolerability, pharmacodynamics, and
efficacy in NMOSD patients experiencing relapses
(NCT04227470). A phase 2 RCT of IVIgG (NPB-01) in
AQP4-ab-positive NMOSD patients did not improve re-
sponse when added to IVMP, but detailed results are
not available. Finally, a new study comparing efficacy
and safety of immunoadsorption and PLEX for acute re-
lapse of refractory NMOSD (CAMPUS; NCT04064944)
has been announced, but is not recruiting yet.

Long-term relapse prevention treatment: overall
principles and objectives
To minimize permanent neurologic disability, long-term
relapse prevention treatment is recommended for all pa-
tients who are diagnosed with NMOSD [18]. So far, no
standard management has been agreed upon for first-
line treatment or treatment switching. Figure 2 summa-
rizes the main therapeutic targets in NMOSD.
Off label use of some older immunosuppressive agents

such as AZA [93–96], MMF [97–99], and rituximab
[100–106] have shown reductions in ARR, with disability
stabilization in retrospective, prospective, and meta-
analysis studies. Rituximab was also recently evaluated
in a RCT (RIN-1) [40]. Tocilizumab has shown promis-
ing reductions in NMOSD relapse activity [80]. Ad-
vances in the understanding of immune mechanisms
involved in NMOSD have led to three recent RCTs
evaluating targeted monoclonal antibodies [13, 19–21,
40, 80]. Eculizumab was the first monoclonal approved
by the Food and Drug Administration to prevent
NMOSD relapses in AQP4-ab-positive patients in June
2019 [13], followed by Inebilizumab (June 2020) [21]
and satralizumab (August 2020) [19, 20]. Primary out-
come in all three trials was efficacy and safety in delay-
ing first relapse after treatment [13, 19–21, 40, 80].
Mechanism of action, doses, and most relevant results of
these drugs are summarized in Tables 1 and 3.

Long-term relapse prevention treatment: old era
Azathioprine and mycophenolate mofetil
For full biologic effects to be observed, azathioprine
(AZA) and mycophenolate (MMF) treatment require at
least 4–6 months duration. Therefore, oral steroids
should also be given, to provide an immunosuppressive
bridge from treatment onset [18]. AZA and MMF have
demonstrated efficacy in different studies of NMOSD
patients, with significant reduction in ARR, and
stabilization or improvement of EDSS scores (Table 3)
[93–106]. In a prospective RCT comparing AZA to ri-
tuximab in NMOSD patients, AZA produced significant

decrease in both ARR (54% of patients were relapse-free
after 1 year) and in disability, with a drop in EDSS from
2.40 to 1.95 [94]. In a Brazilian study on 150 patients,
69% presented no accumulation of disability after 5-year
follow-up [93]. Another multicenter retrospective study
with 103 AQP4-ab-positive NMOSD patients showed
89% experienced significant ARR reduction on AZA (1.5
vs. 0.0), and 61% of patients were relapse-free, although
no significant reduction in EDSS was reported [95].
Of note, AZA was discontinued in 62% of patients
due to side effects ([SEs]; increased liver enzymes and
pancytopenia) [95]. Rituximab and MMF were more
efficacious than AZA in comparative effectiveness
studies [103–105].
One recent study reported 50.7% of patients experi-

enced a relapse on MMF, 59.7% continued on MMF,
and 83% showed stabilization or improvement of disabil-
ity at most recent follow-up [97]. In another study, 9 of
10 patients with ongoing relapse activity on MMF were
switched to rituximab, and showed reduction or absence
of new relapses [98].

Rituximab
In patients treated with rituximab, NMOSD activity has
been correlated with B cell levels, but not AQP4-ab
levels [106]. Two meta-analyses suggested relevant re-
duction of ARR with stabilization or improvement in
EDSS [100, 102]. Comparative studies have shown ritux-
imab is more effective than AZA and MMF in decreas-
ing ARR and relapse severity as well as preventing new
relapses [103–105]. Even when rituximab dosing was not
optimal, failure rates were still lower than with AZA or
MMF [103]. So far, only one phase 2/3, multi-center,
double-blind, RCT (RIN-1) [40] evaluating rituximab in
NMOSD patients has been conducted in Japan. Results
showed that patients treated with rituximab experienced
significantly lower ARR compared to placebo (0% vs.
37%) after 72-week follow-up. No statistical differences
were observed in EDSS. However, the small number of
patients, varying relapse history, concurrent use of high-
dose steroids, and inclusion of AQP4-ab-positive pa-
tients only mean results need to be interpreted with
caution.

Tocilizumab
Two open-label trials with IV tocilizumab in AQP4-ab-
positive NMOSD patients, either as concomitant treat-
ment or monotherapy, have demonstrated reduction in
ARR [107, 108]. Tocilizumab has also been associated
with clinical stabilization in NMOSD patients who failed
one or more first-line treatments. Patients who were
refractory to rituximab (highly active NMOSD) showed
reduction in clinical and radiological activity after treat-
ment with tocilizumab [107]. Of note, tocilizumab
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improved fatigue and neuropathic pain in a small trial of
NMOSD patients, suggesting that the IL-6 pathway may
be involved in these mechanisms [108]. Recently, an
open-label, multicenter, phase 2 RCT evaluating safety
and efficacy of tocilizumab vs. AZA in highly relapsing
NMOSD (TANGO) [92] reported a significantly shorter
median time to first relapse in the AZA group compared
to the tocilizumab group. In addition, 47% of patients
treated with AZA and 14% on tocilizumab experienced a
relapse at 90 weeks. Moreover, SEs were reported in
83% of patients on AZA and 61% in the tocilizumab
group [80]. Additionally, a phase 1/2 single center, open-
label trial has been completed to determine if toci-
lizumab as monotherapy contributes to reduce ARR and
improve disability in NMOSD patients who experienced
relapses on immunosuppressive therapies (including
rituximab). Results are not yet available (Table 3).
Subcutaneous tocilizumab treatment has demonstrated
similar effectiveness to IV administration [109].

Other treatments
Cyclophosphamide, methotrexate, and mitoxantrone,
with or without concomitant steroids, were evaluated in
uncontrolled retrospective studies [18, 21]. In all but
one, disease stabilization was observed. One study re-
ported that cyclophosphamide was ineffective and asso-
ciated with SE [110].

Long-term relapse prevention treatment: present era
Eculizumab
Efficacy and safety results of IV eculizumab were re-
cently published from a time-to-event RCT (PREVENT
trial) [13] conducted in AQP4-ab-positive NMOSD pa-
tients, with highly active disease. Relapses were deter-
mined by an independent committee and secondary
outcomes included ARR, EDSS, and quality of life scales
[13, 111]. Patients were randomized 2:1 to receive eculi-
zumab or placebo (plus ongoing immunosuppressive
treatment). Nearly 76% of patients were on concomitant
immunosuppressive therapy (AZA, MMF, or oral
steroids) during the trial [13, 111]. Patients who had re-
ceived rituximab in the 3 months prior to the study were
excluded. Approximately one-quarter confirmed efficacy
of eculizumab as monotherapy [13, 111]. NMOSD
patients (n = 143) receiving eculizumab experienced a
relative risk reduction of 94% (hazard ratio [HR]: 0.06; p
< 0.001) over the 48-week study period, compared to
placebo (ARR 3% vs. 46%, respectively) [13]. Although
patients on eculizumab had lower adjudicated ARR than
placebo (0.02 vs. 0.35; p < 0.001), no statistical differ-
ences in EDSS or quality of life outcomes were observed
between groups. Regarding safety, eculizumab showed a
profile similar to that of placebo, even in the open-label
extension study recently published [13]. Given the fact

that eculizumab increases the risk of infection by encap-
sulated bacteria, particularly meningococcus, all patients
received meningococcal vaccination 2-week prior to the
first dose [111]. However, patients on eculizumab re-
main at risk for meningococcal disease even after receipt
of meningococcal vaccines and some health care pro-
viders in the USA as well as public health agencies in
other countries recommend prophylactic treatment with
appropriate antibiotics for the duration of eculizumab
treatment [112]. No cases of drug discontinuation or
meningococcal infection were reported, although one
case of Neisseria gonorrhoeae infection was observed in
the open-label study [13].

Inebilizumab
Results on efficacy and safety of IV inebilizumab were
recently published in a double-blind, RCT phase 2/3 (N-
MOmentum trial) [21] in AQP4-ab-positive (n = 213)
AQP4-ab-negative (n = 17), and MOG-ab positive (n =
7) NMOSD patients. All patients received concomitant
oral steroids to reduce risk of relapse following B cell de-
pletion. Relapses (defined specifically for this study) were
confirmed by an adjudication panel (MRI confirmation
of relapse was required in some cases). Secondary out-
comes included EDSS worsening, change in low-contrast
VA score, cumulative MRI lesions, and number of
NMOSD-related hospitalizations. Immunosuppressant
therapy use was allowed prior to trial with different
wash-out periods and other laboratory parameters had
to be normalized. Concomitant immunosuppression use
was not allowed. Patients were randomized 3:1 to receive
inebilizumab or placebo, to mitigate risk in the placebo
group [111]. Inclusion criteria were at least 1 relapse
within the previous 1 year, or at least 2 relapses within
the past 2 years and an EDSS score of 8 or less [21, 111].
Patients who received inebilizumab experienced 73%
relative risk reduction (HR: 0.272; p < 0.0001) in number
of relapses over the 28-week study period compared to
placebo (12% vs. 39%, respectively) [21]. This effect was
more robust in AQP4-ab-positive patients (11% vs. 42%,
respectively). Positive effects on secondary outcomes
were also observed, except for low-contrast VA scores
[21, 111]. Regarding safety, inebilizumab showed a favor-
able profile, similar to placebo. No deaths occurred
throughout the randomized controlled period, although
2 patients discontinued treatment in the inebilizumab
group due to SEs. Two deaths were reported in the
open-label extension study, one of them not related to
inebilizumab [111].

Satralizumab
Results on efficacy and safety of subcutaneous satralizu-
mab were recently published in two, time-to-event
RCTs, conducted in AQP4-ab-positive and negative (~
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30% of the study population) NMOSD patients [19, 20].
The first study (Sakura-Sky) [19] was an add-on trial
(AZA, MMF, or oral steroids, but not rituximab), and
primary outcome was time to first protocol-defined
relapse in the double-blind period, as adjudicated by
committee blinded to clinical endpoints. Secondary out-
comes included change in scale for pain and fatigue
(FACIT-F) score [19]. Patients were randomized 1:1 to
receive satralizumab or placebo (plus ongoing immuno-
suppressive treatment). Inclusion criteria required pa-
tients to have had at least 2 relapses within the previous
2 years, with one of these occurring within the past year,
or at least 1 relapse within the past year. EDSS scores of
6.5 or less were allowed. Seven adolescents were enrolled
(4 in the satralizumab and 3 in the placebo group). Pa-
tients who received satralizumab experienced a relative
risk reduction of 62% in time to first relapse (HR: 0.38; p
= 0.02; median double-blind treatment duration was
107.4 weeks for satralizumab and 32.5 weeks for pla-
cebo) compared to placebo (20% vs. 43%, respectively).
AQP4-ab-positive patients showed 79% reduction in re-
lapse risk and AQP4-ab-negative patients 34% [19]. At
96 weeks, 78% of patients receiving satralizumab were
relapse-free, compared to 59% receiving placebo. At 48
and 96 weeks, 92% of AQP4-ab-positive patients on
satralizumab were relapse-free. No change was observed
in pain or fatigue scores from baseline [19, 111].
Satralizumab was also studied as monotherapy in a

similar-design phase 3 study (SAkuraStar trial) [20]. Pa-
tients were randomized 2:1 to satralizumab or placebo.
Unlike the SAkuraSky trial, concomitant immunosup-
pressant use was not allowed. Inclusion criteria and clin-
ical endpoints were the same as in the SAkuraSky trial.
Patients who received satralizumab as monotherapy ex-
perienced a relative risk reduction of 55% in time to first
relapse (HR: 0.45; p = 0.01) compared to the placebo
group (30% vs. 50%, respectively) [20]. At 96 weeks, 72%
of patients receiving satralizumab were relapse-free,
compared to 51% of patients on placebo. The response
was more robust in the AQP4-ab-positive patients (77%
vs. 41%) [20, 111].
Satralizumab showed a favorable safety profile in both

studies. No death or anaphylactic reactions were ob-
served. Only one patient in the SAkuraStar trial discon-
tinued treatment due to pneumonia [19, 20, 111].

Long-term relapse prevention treatment: future era
New drugs including BAT4406F, SHR1459, ravulizumab,
bortezomib, cetirizine, telitacicept, and autologous
hematopoietic stem cell transplantation (HSCT) are cur-
rently under investigation in ongoing RCTs (Tables 1
and 3).
A phase I RCT on safety, tolerability, and pharmaco-

kinetics of BAT4406F (a fully humanized anti-CD20

monoclonal antibody) through intravenous infusion will
be starting soon in NMOSD patients (NCT04146285), as
will an open-label phase 2 trial evaluating efficacy and
safety of SHR1459 (Bruton’s Tyrosine Kinase Inhibitor)
in (NCT04670770).
Ravulizumab, a molecule derived from eculizumab, is

a second generation anti-C5 complement protein, with
an extended serum half-life (three- to four-fold) [113]. A
phase 3, external placebo-controlled, open-label,
multicenter study evaluating efficacy and safety of
ravulizumab in NMOSD patients is currently underway
(NCT04201262).
Bortezomib, a proteasome inhibitor used in the treat-

ment of multiple myeloma, has been studied in a cohort
of Chinese patients [114]. Four out of 5 patients receiv-
ing bortezomib as rescue therapy were relapse-free at 1
year. Stabilization was associated with decrease in serum
AQP4-ab titers, as well as in peripheral plasma cell and
precursor B cell counts [114]. Phase 2 has been com-
pleted, but results are not yet available.
A small pilot study on cetirizine (a second-generation

antihistamine) as add-on therapy reduced ARR at 1-year
of follow-up, although no significant difference in EDSS
scores were observed [115]. Further research will be
needed to confirm these results.
An ongoing phase 3 randomized, placebo-controlled

study is evaluating telitacicept, an inhibitor of B lymphocyte
stimulator (BlyS) and of APRIL [116], in AQP4-ab-positive
NMOSD patients without recent immunosuppressive treat-
ment (NCT03330418). This drug was recently approved for
treatment of lupus, after showing efficacy and safety in a
pivotal phase 2b trial (NCT02885610).
Another study showed prolonged drug-free remission

in 11 NMOSD patients with seroconversion of positive
AQP4-ab status to negative, following non-myeloablative
autologous hematopoietic stem cell transplant HSCT
[117]. Most recently, a meta-analysis evaluating
autologous HSCT in 31 NMOSD patients showed 76%
progression-free survival and 0% transplant-related mor-
tality in treated patients [118].
Finally, aquaporumab a targeted non-immunosuppressive

therapy has shown effects in AQP4-ab-positive NMOSD cell
cultures [119].

Therapeutic considerations in pregnancy and pediatric
NMOSD patients
Trophoblasts in the placenta express AQP4 and are ex-
posed to maternal blood containing AQP4-ab [120]. Sev-
eral studies have shown women with NMOSD are at
increased risk of relapse, particularly postpartum [121,
122]. However, available data is insufficient to precisely
define risk of relapse during pregnancy [121–125].
MMF, methotrexate, or mitoxantrone are contraindi-
cated in pregnant women. AZA, rituximab, eculizumab,
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and steroids appear to be relatively safe and may be con-
tinued, depending on disease severity [123–125]. Add-
itionally, tocilizumab may be also be an option in
pregnant women with severe NMOSD [125].
Previous studies have identified relapsing NMOSD in

pediatric patients [126, 127]. Although the list of new
treatments for adults with NMOSD is increasing, only
one trial (Sakura-Sky) [19] has included pediatric pa-
tients (over the age of 12). Pediatric NMOSD patients
should be prescribed immunosuppressive treatment.
Until more experience is gained with newer agents,
therapeutic options available for this age group include
rituximab, AZA, or MMF [127].

Conclusions and future perspectives
During the last two decades, knowledge on the patho-
physiological mechanisms involved in NMOSD has ad-
vanced significantly. In addition, new diagnostic features
have been described, opening the door to new thera-
peutic targets. A clear demonstration of this, are the 3
new monoclonal antibodies, targeting 3 different disease
pathways, showing efficacy in recent phase III-controlled
trials [13, 19–21]. Although this has shifted broad im-
munosuppression to more narrow treatment targets, un-
met needs persist in NMOSD patients. Therapies
improving regeneration and restoring functionality are
missing, and AQP4-ab-negative patients are underrepre-
sented or absent from most clinical trials, so that con-
firmation of the underlying disease mechanism has not
been possible in this particular patient group [19, 20].
Thus, the absence of observed efficacy in AQP4-ab-
negative NMOSD patients may be attributable to the
greater degree of disease heterogeneity within the gen-
eral AQP4-ab-negative subpopulation [18–20]. These
findings could be also interpreted as that some AQP4-
ab-negative patients with clinical and neuroradiological
features of NMOSD have a different underlying antibody
target [10]. This could be partially explained by the pres-
ence of MOG-ab in a subgroup of the AQP4-ab-
negative patients [15, 21]. Although AQP4-ab-negative
patients are considered in the 2015 NMOSD diagnostic
criteria [10], a large diagnostic disagreement was re-
ported in this subgroup of patients even among experts
in this field [128], since the criteria were not consistently
used.
Long-term impact of recently developed drugs remains

to be established. Which is the best drug to initiate
treatment? Does aggressiveness of disease condition
drug selection? Is there really one compound that is
more effective than another? How do we evaluate sub-
optimal response to treatment? These are all un-
answered questions. In MS, some clarity on these issues
has been achieved. Although desirable, head-to-head su-
periority studies involving different drugs are currently

underway; they are difficult to complete given the low
prevalence of disease, paucity of relapses in treated pa-
tients, and the heterogeneity of the study populations.
Hopefully, prospective multi-center, real-life studies will
provide high-level evidence-based information, on the
best treatment regimens, as well as their long-term ef-
fects. Finally, can long-term treatment be discontinued
in the absence of disease activity? This is a critical prob-
lem for patients who have to weigh life-long immuno-
suppressive treatment, against risk of relapse and the
burden of disability. Currently, there is no consensus re-
garding the optimum duration of long-term preventive
treatment, and therefore a frequent clinical dilemma is
the feasibility of treatment withdrawal in patients who
have achieved a sustained period of clinical stability.
However, immunosuppressant therapies discontinuation
may increase the risk of relapse in AQP4-ab-positive
NMOSD patients even after 5 years of remission [129].
For this reason, induction of immune tolerance [130],
although a very recent concept, is a fascinating new
alternative well worth exploring to avoid the need for
long-term drug administration in NMOSD patients.
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