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a b s t r a c t 

“Brain-predicted age ” quantifies apparent brain age compared to normative neuroimaging trajectories. Advanced 

brain-predicted age has been well established in symptomatic Alzheimer disease (AD), but is underexplored in 

preclinical AD. Prior brain-predicted age studies have typically used structural MRI, but resting-state functional 

connectivity (FC) remains underexplored. Our model predicted age from FC in 391 cognitively normal, amyloid- 

negative controls (ages 18–89). We applied the trained model to 145 amyloid-negative, 151 preclinical AD, and 

156 symptomatic AD participants to test group differences. The model accurately predicted age in the training 

set. FC-predicted brain age gaps (FC-BAG) were significantly older in symptomatic AD and significantly younger 

in preclinical AD compared to controls. There was minimal correspondence between networks predictive of age 

and AD. Elevated FC-BAG may reflect network disruption during symptomatic AD. Reduced FC-BAG in preclinical 

AD was opposite to the expected direction, and may reflect a biphasic response to preclinical AD pathology or 

may be driven by inconsistency between age-related vs. AD-related networks. Overall, FC-predicted brain age 

may be a sensitive AD biomarker. 
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. Introduction 

Magnetic resonance imaging (MRI) has revealed structural and func-

ional brain changes in the progression of Alzheimer disease (AD)

 Frisoni et al., 2010 ; Dennis and Thompson, 2014 ). Specifically, re-

ional cortical thinning and volume loss are thought to result from

eurodegenerative processes and typically occur after amyloid deposi-

ion and hyperphosphorylated tau aggregation ( Bateman et al., 2012 ;

ack et al., 2013 , 2016 ). Additionally, differences in resting-state func-

ional connectivity (FC) are thought to reflect disruption of brain net-
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orks, particularly in regions with amyloid deposition ( Greicius et al.,

004 ; Hedden et al., 2009 ; Brier et al., 2012 , 2014a ). 

Recent advances in machine learning have yielded complex, non-

inear, multivariate, predictive models of neuroimaging data. One ap-

roach models normative trajectories of neuroimaging features across

he adult lifespan to quantify how “old ” an individual’s brain appears

n relation to the normative trajectory. Thus, this “brain-predicted age ”

ramework summarizes complex neuroimaging age relationships into a

imple, easily interpretable summary measure ( Cole and Franke, 2017 ;

ranke and Gaser, 2019 ). Deviations from normative trajectories cap-
ril 2022 
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ured by brain-predicted age may yield substantial clinical utility as re-

iable, personalized biomarkers of physiological processes that underly

rain aging and contribute to cognitive decline or reserve. 

Several studies have observed advanced brain aging in mild cog-

itive impairment (MCI) and symptomatic AD ( Franke et al., 2010 ;

ranke and Gaser, 2012 ). Further, brain-predicted age predicts progres-

ion from MCI to AD with greater discrimination than simpler struc-

ural estimates of hippocampal volume, established cognitive screening

ests, or biomarkers of amyloid and tau pathophysiology ( Gaser et al.,

013 ). Beyond AD, brain-predicted age estimates are broadly sensi-

ive to a range of psychiatric and neurological disorders ( Franke and

aser, 2019 ). Thus, brain-predicted age may provide a comprehensive

iew of healthy and pathological brain aging above and beyond simpler

nivariate measures derived from the same imaging data. Hence, brain-

redicted age might be useful as a screening or staging tool in early

D. However, it is unknown at what stage of AD progression advanced

rain aging first appears. For instance, brain-predicted age may be sensi-

ive to subtle differences associated with preclinical amyloidosis and/or

au pathophysiology. Although previous studies have demonstrated that

rain-predicted age is associated with genetic risk of AD ( Löwe et al.,

016 ), as well as with amyloid deposition in Down syndrome ( Cole et al.,

017 ), brain-predicted age has been relatively underexplored in the pre-

linical stage of late onset AD (i.e., accumulation of amyloid and tau)

 Ly et al., 2020 ). 

Moreover, prior brain-predicted age models have focused primarily

n structural MRI ( Cole and Franke, 2017 ; Franke and Gaser, 2019 ).

ore recent studies have considered additional imaging modalities,

ncluding metabolic PET ( Goyal et al., 2019 ) and diffusion MRI

 Cherubini et al., 2016 ). FC-based brain age models have been applied

o developmental samples ( Dosenbach et al., 2010 ; Nielsen et al., 2019 ),

ut have only recently been applied to older adults and AD cohorts

 Eavani et al., 2018 ; Gonneaud et al., 2021 ; Liem et al., 2017 ). Recent

ultimodal comparisons of FC- and structural MRI-based age prediction

ave shown that these unimodal estimates are only modestly correlated

 Dunås et al., 2021 ; Eavani et al., 2018 ) and that multimodal models

redict age more accurately than unimodal models ( Engemann et al.,

020 ; Liem et al., 2017 ). These results are consistent with the interpre-

ation that functional and structural imaging modalities capture comple-

entary age-related signals. Thus, FC might offer a promising avenue

or modeling age-related differences and maximizing sensitivity to early

D. 

Since FC disruptions have been noted in both healthy age differ-

nces and preclinical AD, unrecognized preclinical AD pathology in

lder adult samples may inflate “healthy aging ” effects ( Brier et al.,

014b ). This influence is particularly relevant in brain-predicted age

odels, which define normative trajectories based on supplied training

ata ( Ly et al., 2020 ). The presence of preclinical pathology in training

ets will bias the “healthy aging ” model and will reduce sensitivity to

etect true deviation due to preclinical pathology. 

Hence, we aim to develop and validate a model of FC-predicted brain

ge that controls for preclinical AD pathology. We will test the sensitiv-

ty of this model to symptomatic and preclinical AD. We predict that the

C-predicted brain age will be elevated in symptomatic AD, consistent

ith structural MRI models. Importantly, we test the novel hypothesis

hat FC-predicted brain age should also be sensitive to subtle network

isruptions in preclinical AD. Finally, we evaluate model-specific FC fea-

ure importance to compare patterns of network disruption in healthy

s. pathological brain aging. 

. Materials and methods 

.1. Participants 

To model differences in functional connectivity across the adult lifes-

an we combined FC data from three sources: participants enroled

n studies at the Knight Alzheimer Disease Research Center (ADRC)
2 
t Washington University in St. Louis (WUSTL) ( Brier et al., 2012 ;

illar et al., 2020 ), healthy controls from existing studies collected by

he Ances lab at WUSTL ( Ortega et al., 2015 ; Thomas et al., 2013 ),

nd mutation-negative controls in the Dominantly Inherited Alzheimer

etwork (DIAN) study of autosomal dominant AD at multiple interna-

ional sites including WUSTL ( Chhatwal et al., 2013 ; McKay et al., 2022 ;

mith et al., 2021 ). To train and test the model’s ability to predict age

n healthy controls, we limited participants only to those who were cog-

itively normal, as assessed by the Clinical Dementia Rating (CDR 0)

 Morris, 1993 ), and had at least one biomarker indicating the absence

f amyloid pathology (see below). We excluded 59 participants over age

0 who did not have an available CDR or biomarker measures in order to

inimize the likelihood of undetected AD pathology in our training set.

his set of healthy control participants was randomly split into a train-

ng set ( ∼80% of the sample; N = 391), in which the model learned to

redict age from FC features, and a held-out testing set ( ∼20%; N = 98),

n which the generalizability of the model was evaluated in unseen data.

Finally, independent samples for residual analyses included three

articipant groups from the Knight ADRC cohorts: a randomly selected

ubset of amyloid-negative controls (who were not included in the train-

ng or testing sets), amyloid-positive preclinical AD participants, and

ymptomatic AD participants. Importantly, since we hypothesized that

odel predictions of brain age should have increased error in the pre-

linical and symptomatic AD samples, these samples were used only for

ypothesis testing and not for evaluating model performance. Moreover,

hese samples came from a restricted age range, which is not represen-

ative of the full adult lifespan sample on which the model was trained.

ee Table 1 for demographic details of each sample. All procedures were

pproved by the Human Research Protection Office at WUSTL. 

.2. Assessment of dementia 

Cognitive status was assessed annually using the CDR ( Morris, 1993 ).

 CDR score of 0 defines cognitive normality, while CDR 0.5, 1, and 2

efine very mild, mild, and moderate dementia, respectively. By design,

ll participants included in the training set, amyloid-negative control, or

reclinical AD groups had CDR scores of 0. The symptomatic AD group

ncluded participants with CDR > 0 with a biomarker measure consistent

ith amyloid pathology (see below) and/or a primary diagnosis of AD

ementia ( McKhann et al., 2011 ). 

.3. PET & CSF biomarkers 

Amyloid burden was imaged with positron emission tomography

PET) using [11C]-Pittsburgh Compound B (PIB) ( Mintun et al., 2006 )

r [18F]-Florbetapir (AV45) ( Clark et al., 2011 ). Regional standard up-

ake ratios (SUVRs) were modeled from 30 to 60 min after injection for

IB and from 50 to 70 min for AV45, using cerebellar grey as the ref-

rence region. Regions of interest were segmented automatically using

reesurfer 5.3 ( Fischl, 2012 ). Global amyloid burden was defined as the

ean of partial-volume-corrected SUVRs from bilateral precuneus, su-

erior and rostral middle frontal, lateral and medial orbitofrontal, and

uperior and middle temporal regions ( Su et al., 2013 ). 

Cerebrospinal fluid (CSF) was collected via lumbar puncture using

ethods described previously ( Fagan et al., 2006 ). After overnight fast-

ng, 20- to 30 mL samples of CSF were collected, centrifuged, then

liquoted (500 μL) in polypropylene tubes, and stored at -80 °C. CSF

myloid 𝛽 peptide 42 (A 𝛽42), A 𝛽40, and phosphorylated tau-181 (pTau)

ere measured with automated Lumipulse immunoassays (Fujirebio,

alvern, PA) using a single lot of assays for each analyte. 

Amyloid positivity was defined using previously published cutoffs

or PIB (SUVR > 1.42) ( Vlassenko et al., 2016 ) or AV45 (SUVR > 1.19)

 Su et al., 2019 ). Additionally, the CSF A 𝛽42/A 𝛽40 ratio has been shown

o be highly concordant with amyloid PET (positivity cutoff < 0.0673)

 Schindler et al., 2018 ; Volluz et al., 2021 ). Thus, participants were de-

ned as amyloid-positive (for preclinical or symptomatic AD groups) if
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Table 1 

Demographic information of the combined samples. DIAN = Dominantly Inherited Alzheimer Network, ADRC = Alzheimer Disease Research Center, AD = Alzheimer disease, CDR = Clinical Dementia Rating, 

MMSE = Mini Mental State Examination, FD = framewise displacement, WUSTL = Washington University in St. Louis, T = Tesla, TR = repetition time. Group differences from the amyloid-negative controls were 

tested with t tests for continuous variables and 𝜒2 tests for categorical variables. ∗ ∗ ∗ p < .001, ∗ ∗ p < .01, ∗ p < .05, ̂  p < .10. 

TRAINING SETS (total N = 391) TEST SETS (total N = 98) ANALYSIS SETS (total N = 483) 

Measure Ances Controls DIAN Mutation - Knight ADRC Ances Controls DIAN Mutation - Knight ADRC Amyloid - Controls Preclinical AD Symptomatic AD 

N 137 120 134 38 26 34 145 151 156 

Age (mean, SD) 30.01 (9.95) 40.02 (10.26) 64.97 (10.57) 26.68 (7.11) 41.46 (12.34) 63.97 (11.31) 66.88 (8.53) 72.69 (6.94) ∗ ∗ ∗ 75.65 (6.85) ∗ ∗ ∗ 

CDR (N 0 / N 0.5 / N 1 / N 2) NA 120 / 0 / 0 / 0 134 / 0 / 0 / 0 NA 26 / 0 / 0 / 0 34 / 0 / 0 / 0 145 / 0 / 0 / 0 151 / 0 / 0 / 0 0 / 119 / 35 / 2 

Amyloid status (N - / + ) NA 120 / 0 134 / 0 NA 26 / 0 34 / 0 145 / 0 0 / 151 0 / 156 

Biomarkers available (N PET / CSF / 

both) 

NA 30 / 6 / 79 11 / 22 / 91 NA 3 / 1 / 21 5 / 0 / 28 24 / 0 / 121 17 / 0 / 134 14 / 0 / 43 

APOE 𝜀 4 carrier status (N - / + ) NA 85 / 35 99 / 34 NA 19 / 7 28 / 5 115 / 30 68 / 83 ∗ ∗ ∗ 56 / 99 ∗ ∗ ∗ 

MMSE (mean, SD) NA NA 29.26 (1.05) NA NA 29.45 (0.94) 29.12 (1.17) 28.98 (1.33) 25.38 (3.53) ∗ ∗ ∗ 

Sex (N female / male) 70 / 64 76 / 44 84 / 50 19 / 18 16 / 10 22 / 12 90 / 55 92 / 59 68 / 88 ∗ ∗ 

Years of education (mean, SD) 13.68 (2.16) 14.78 (3.04) 16.16 (2.43) 13.95 (1.99) 14.92 (2.83) 16.48 (2.43) 15.68 (2.66) 15.95 (2.64) 15.03 (2.96) ∗ 

Race (% white) 44.5% 98.3% 83.6% 45.9% 100% 78.8% 87.6% 88.7% 87.2% 

Mean mm FD (mean, SD) 0.11 (0.05) 0.11 (0.05) 0.17 (0.06) 0.11 (0.05) 0.11 (0.04) 0.17 (0.06) 0.18 (0.06) 0.18 (0.06) 0.19 (0.06) 

Frames retained (mean, SD) 85% (9%) 82% (11%) 80% (11%) 84% (10%) 85% (10%) 78% (12%) 78% (12%) 78% (11%) 76% (12%) 

Site WUSTL Multiple sites WUSTL WUSTL Multiple sites WUSTL WUSTL WUSTL WUSTL 

Scanner Siemens Trio Siemens Trio / 

Verio 

Siemens Trio / 

Biograph 

Siemens Trio Siemens Trio / 

Verio 

Siemens Trio / 

Biograph 

Siemens Trio / 

Biograph 

Siemens Trio / 

Biograph 

Siemens Trio / 

Biograph 

Field strength 3T 3T 3T 3T 3T 3T 3T 3T 3T 

Voxel size (mm 

3 ) 4.0 3.0 – 4.0 4.0 4.0 3.0 – 4.0 4.0 4.0 4.0 4.0 

TR (ms) 2200 2200 – 3000 2200 2200 2200 – 3000 2200 2200 2200 2200 

# runs / # frames per run 2 / 164 1 / 120 2 / 164 2 / 164 1 / 120 2 / 164 2 / 164 2 / 164 2 / 164 

3
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hey had either a PIB, AV45, or CSF A 𝛽42/A 𝛽40 ratio measure in the

ositive range. Since no published thresholds were available for CSF tau

ositivity, we defined an exploratory threshold by a median split of pTau

ithin the preclinical AD sample (positivity cutoff > 53.15 pg/mL). 

.4. APOE genotype 

APOE genotyping was performed using either an Illumina 610 or

mniexpress chip using methods described previously ( Cruchaga et al.,

013 ). We defined 𝜀 4 carriers as those with at least one 𝜀 4 allele present,

hat is, 𝜀 2/ 𝜀 4, 𝜀 3/ 𝜀 4, and 𝜀 4/ 𝜀 4, whereas 𝜀 4 non-carriers were those

ithout a single 𝜀 4 allele present, that is, 𝜀 2/ 𝜀 2, 𝜀 2/ 𝜀 3, and 𝜀 3/ 𝜀 3. The

requencies of APOE genotypes per group are presented in Table 1 . 

.5. MRI acquisition and preprocessing 

All MRI data were obtained using a Siemens 3T scanner, al-

hough there was a variety of specific models within and across stud-

es (see Table 1 ). As described previously, participants in the Knight

DRC ( Brier et al., 2012 ) and Ances lab ( Thomas et al., 2013 ) stud-

es completed identical protocols for structural (sagittal T1-weighted

agnetization-prepared rapid gradient echo sequence [MPRAGE] with

epetition time [TR] = 2400 ms, echo time [TE] = 16 ms, flip angle = 8°,

eld of view = 256 mm, 1 mm isotropic voxels; oblique T2-weighted

ast spin echo sequence [FSE] with TR = 3200 ms, TE = 455 ms, 256

 256 acquisition matrix, 1 mm isotropic voxels) and functional imag-

ng (interleaved whole-brain echo planar imaging sequence [EPI] with

R = 2200 ms, TE = 27 ms, flip angle = 90°, field of view = 256 mm,

 mm isotropic voxels for two 6 min runs [164 volumes each] of eyes

pen fixation), although there was some variability in the sequence pa-

ameters for the DIAN participants (see Table 1 ) with the most notable

ifference being shorter resting-state runs (one 5 min run of 120 vol-

mes). 

All MRI data were processed using a common pipeline. Multiple

esting state runs from a single session were processed together. Initial

reprocessing followed conventional methods, as described previously

 Brier et al., 2012 ; Millar et al., 2020 ; Shulman et al., 2010 ). Briefly,

hese steps included frame alignment, debanding, rigid body transfor-

ation, bias field correction, and normalization of within-run intensity

alues to a whole-brain mode of 1000 ( Power et al., 2012 ). Transfor-

ation to an in-house atlas template based on 120 independent, cog-

itively normal older adults (CAPIIO) was performed using a compo-

ition of affine transforms connecting the functional volumes with the

2-weighted and MPRAGE images. Frame alignment was included in a

ingle resampling that generated a volumetric timeseries of the concate-

ated runs in isotropic 3 mm atlas space. 

As described previously ( Fox et al., 2009 ; Millar et al., 2020 ), addi-

ional processing was performed to allow for nuisance variable regres-

ion. Masks of whole brain, grey matter, white matter, and CSF were

enerated from T1 images in FreeSurfer 5.3 ( Fischl, 2012 ). Two indices

f framewise motion were calculated across the BOLD timeseries, includ-

ng framewise displacement (FD) and derivative of variance (DVARS).

ata were subjected to framewise censoring based on the motion es-

imates. Specifically, volumes were censored if FD exceeded 0.3 mm

r if DVARS exceeded 2.5 SD from the participant’s mean. To further

inimize the confounding influence of head motion on FC estimates

 Power et al., 2012 ) in all samples, we only included individuals with

ow estimates of in-scanner head motion (mean FD < 0.30 mm and >

0% frames retained after motion censoring, see Supplementary Fig.

1). BOLD data were subjected to a temporal band-pass filter (0.005 Hz

 f < 0.1 Hz) and subjected to nuisance variable regression, including

otion parameters, as well as timeseries from the whole brain (global

ignal), CSF, ventricle, and white matter masks, as well as the deriva-

ives of these signals. Finally, BOLD data were spatially blurred (6 mm

ull width at half maximum). 
4 
.6. Functional connectivity features 

Final BOLD timeseries data were averaged across voxels within a set

f 300 spherical regions of interest (ROIs) in cortical, subcortical, and

erebellar areas ( Seitzman et al., 2020 ). Each ROI has previously been

ssigned to one of 16 putative networks, including: somatomotor (SM),

ateral somatomotor (SML), cingulo-opercular (CO), auditory (AUD), de-

ault mode (DMN), parietal memory (PMN), visual (VIS), fronto-parietal

FPN), salience (SAL), ventral attention (VAN), dorsal attention (DAN),

edial temporal lobe (MTL), reward (REW), basal ganglia (BG), thala-

us (THAL), cerebellum (CER) networks, as well as unassigned (NA)

OIs ( Seitzman et al., 2020 ). For each scan, we calculated the 300

 300 FC matrix as the Fisher-transformed Pearson correlation ma-

rix of the final averaged BOLD timeseries between all ROIs. We then

sed the vectorized upper triangle of each correlation matrix (exclud-

ng auto-correlations; 44,850 total correlations) as the input features

or predicting age. Since site and/or scanner differences between sam-

les might confound neuroimaging estimates, we harmonized FC cor-

elation matrices across sites and scanners using an empirical Bayes

odeling approach (ComBat, see Supplementary Fig. S2) ( Fortin et al.,

017 ; Johnson et al., 2007 ), which has recently been applied to FC data

 Yu et al., 2018 ). We also performed analyses without ComBat and ob-

erved consistent results (see Supplementary Table S1, as well as Sup-

lementary Figs S4 and S5). 

.7. Gaussian process regression (GPR) 

Machine learning analyses were conducted using the Regression

earner application in Matlab 2021a ( MathWorks, 2021a ). Follow-

ng previous models of brain-predicted age using structural imaging

 Cole et al., 2015 ), we trained a Gaussian process regression (GPR,

trgp () function) ( MathWorks, 2021b ; Rasmussen, 2003 ) model with a

ational quadratic kernel function to predict chronological age using the

armonized, vectorized FC matrices as feature inputs in the training set.

he 𝜎 hyperparameter was tuned by searching a range of values from

0 -4 to 10 ∗ SD age using Bayesian optimization across 100 training eval-

ations. The optimal range of 𝜎 was found from ∼10 -4 to 1 (see Supple-

entary Fig. S3), and 𝜎 was set to .0385 for all subsequent models. All

ther hyperparameters were set to default values (basis function = con-

tant, standardize = true, MathWorks, 2021b ). 

Model performance in the training set was assessed using 10-fold

ross validation via the total proportion of variance explained ( R 

2 ), root-

ean-squared error ( RMSE ), and mean absolute error ( MAE ) between

rue chronological age and the cross-validated age predictions merged

cross the 10 folds. We then evaluated generalizability of the trained

PR model to predict age in unseen data by applying the trained model

o the held-out test set of healthy controls. Finally, we applied the same

rained GPR model to separate analysis sets of symptomatic AD, pre-

linical AD, and amyloid-negative controls in order to derive estimates

f FC-predicted brain age and test our hypotheses regarding AD-related

roup differences. 

For each participant in the analysis sets, we calculated the FC-

redicted brain age gap (FC-BAG) as the difference between model-

redicted and chronological age. In order to correct for regression dilu-

ion commonly observed in similar models ( Le et al., 2018 ; Liang et al.,

019 ; Smith et al., 2019 ), we residualized FC-BAG by including chrono-

ogical age as a covariate when testing for group differences ( Cole et al.,

017 ; Le et al., 2018 ). However, to avoid inflating estimates of pre-

iction accuracy ( Butler et al., 2021 ), only uncorrected age prediction

alues were used for evaluating model performance in the training and

est sets. Greater residual FC-BAG estimates can be interpreted to reflect

ases in which the pattern of FC appears older than expected given the

articipant’s true age, after correcting for the age-dependent bias on the

odel prediction. We hypothesized that this pattern of elevated FC-BAG

hould be observed in preclinical and symptomatic AD. 
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.8. Feature selection analyses 

To explore which FC networks drove age prediction in the GPR

odel, we identified the strongest predictors of age by performing for-

ard sequential feature selection ( Pudil et al., 1994 ) in the full training

ample of cognitively normal, amyloid-negative controls. Specifically,

e used the sequentialfs() function in MatLab ( MathWorks, 2021c ) to

dentify FC network features that improved cross-validated age predic-

ion accuracy in the fully-trained and optimized GPR model. Compared

o backward feature selection methods (e.g., recursive feature elimina-

ion; Guyon and Elisseeff, 2003 ; Kohavi and Sommerfield, 2000 ), for-

ard sequential feature selection may perform better when the number

f important features is small ( Aha and Bankert, 1996 ). Given that the

im of this analysis was to reduce the number of important features

o an interpretable amount, forward selection was chosen over back-

ard selection. In order to further improve interpretability, minimize

ollinearity between the 44,850 regional FC pairs, and reduce computa-

ional time, we performed feature selection at the level of functional net-

orks (17 x 17 matrix), rather than ROIs (300 x 300 matrix). However,

his network-level approach necessarily loses information regarding re-

ional specificity and assumes that network-level averages adequately

ummarize regions within the networks. 

To compare these age-predictive FC features to those that are most

redictive of AD, we also performed forward sequential feature selection

ith support vector machine (SVM; MathWorks, 2021d ) models. These

nalyses identified features that improved cross-validated classification

ccuracy between amyloid-negative controls and either preclinical AD

r symptomatic AD participants. SVM hyperparameters for kernel func-

ion, box constraint, and kernel scale were tuned separately for preclini-

al and symptomatic SVM models using a similar Bayesian optimization

pproach. 

.9. Design and statistical analysis 

We tested our hypotheses regarding symptomatic and preclinical

D by performing cross-sectional analyses of existing data. All statis-

ical analyses were conducted in R 4.0.2. ( R Core Team, 2020 ). Group

ifferences in the AD samples were tested with independent-samples

 tests for continuous variables and 𝜒2 tests for categorical variables,

sing the cognitively normal amyloid-negative controls as a reference

roup. FC-BAG was the main dependent variable of interest. We tested

ymptomatic and preclinical AD group differences with linear regres-

ion models. To correct for age-related bias in FC-BAG estimates (e.g.,

e et al. 2018 ), as well as demographic differences between samples,

e controlled for age, sex, years of education, and race as covariates

uring statistical tests. Post hoc pairwise group comparisons were tested

ith independent-samples t tests. For all independent-samples t tests, we

ested the assumptions that residual FC-BAG was normally distributed

ith equal variance between groups, respectively, with the Shapiro-Wilk

est of normality and Levene’s test for equality of variances. To distin-

uish between effects of APOE genotype vs. AD pathology, we performed

nalyses with and without controlling for APOE genotype. Effect sizes

ere computed as partial 𝜂2 ( 𝜂p 
2 ). 

.10. Data availability 

The data and code used in this study are available by request

hrough the Knight ADRC ( https://knightadrc.wustl.edu/research/

esourcerequest.htm ). 

. Results 

.1. Sample & demographics 

A total of 391 participants were included in the training sets (137

nces lab controls, 120 DIAN controls, and 134 Knight ADRC controls).
5 
n additional 98 participants were included in the test sets (38 Ances lab

ontrols, 26 DIAN controls, and 34 Knight ADRC controls). Finally, 483

ndependent participants from the Knight ADRC were included in the

nalysis sets (145 amyloid-negative controls, 151 preclinical AD, and

56 symptomatic AD). Full demographic characteristics are reported in

able 1 . Preclinical AD participants were significantly older ( t = 6.42,

 < .001) and more likely to be APOE 𝜀 4 carriers ( 𝜒2 = 35.39, p < .001)

han amyloid-negative controls. Further, symptomatic AD participants

ere significantly older ( t = 9.80, p < .001), more likely male ( 𝜒2 = 9.56,

 = .002), more likely to be APOE 𝜀 4 carriers ( 𝜒2 = 55.25, p < .001), and

ad marginally fewer years of education ( t = 2.01, p < .046) and lower

MSE scores ( t = 12.55, p < .001) than amyloid-negative controls. 

.2. FC successfully predicts brain age in training and test sets 

The GPR model was able to accurately predict chronological age

rom the FC matrices in the full training set of healthy controls as as-

essed using 10-fold cross validation. As shown in Fig. 1 A, FC-predicted

rain age was strongly correlated with chronological age ( R 

2 = .682)

ith an MAE of 8.587 years ( RMSE = 10.441). Further, accurate model

erformance was generalizable to the held-out test set, as shown in

ig. 1 B ( R 

2 = .727, MAE = 8.195, RMSE = 10.317). 

.3. Elevated FC-BAG in symptomatic AD 

Residual FC-BAG was normally distributed in all groups defined by

ognitive status (Shapiro-Wilk statistics > 0.99, ps > 0.39). Variance in

esidual FC-BAG did not differ between groups (Levene’s statistic = 0.07,

 = 0.80). 

A linear regression model tested the effect of symptomatic AD (de-

ned as CDR > 0 vs. CDR = 0 within the complete analysis sets)

n FC-BAG, controlling for true age and demographic covariates (see

able 2 A). FC-BAG was 2.88 years older in symptomatic AD participants

ompared to controls ( 𝛽 = 2.88, p < 0.001, 𝜂p 
2 = 0.04, see Fig. 2 A and

, Table 2 A). Importantly, the effect of symptomatic AD remained sig-

ificant in the full model controlling for all biomarkers and covariates

 𝛽 = 3.71, p < 0.001, 𝜂p 
2 = 0.03, see Table 2 E). 

Pairwise independent-samples t tests revealed that residual FC-BAG

as only marginally elevated in CDR > 0.5 participants relative to

DR = 0 ( t = 1.64, p = .109, see Supplementary Fig. 6), but did not differ

ignificantly between CDR = 0.5 and CDR > 0.5 ( t = 0.07, p = .945). 

.4. Reduced FC-BAG in preclinical AD 

Residual FC-BAG was normally distributed in all groups defined by

D biomarkers (Shapiro-Wilk statistics > 0.98, ps > 0.29). Variance in

esidual FC-BAG did not differ between groups (Levene’s statistic = 0.26,

 = 0.77). 

Another regression model tested the effect of preclinical AD (de-

ned as cognitively normal amyloid-positive vs. amyloid-negative) on

C-BAG, controlling for age and demographic covariates (see Table 2 B).

C-BAG was 1.92 years younger in preclinical AD participants compared

o controls ( 𝛽 = -1.92, p = .018, 𝜂p 
2 = 0.02, Table 2 B). 

To explore whether the effects of preclinical AD pathology on FC-

AG were associated with the stages of amyloidosis (A- vs. A + ) and/or

au pathophysiology (T- vs. T + ), we further split the preclinical and

ontrol samples by tau positivity and simultaneously tested these ef-

ects in an additional linear model (see Table 2 C). FC-BAG was 2.15

ears younger in T + compared to T- participants ( 𝛽 = -2.15, p = .034,

p 
2 = 0.02, see Fig. 2 C and D, Table 2 C). Controlling for tau, there was no

ifference between A + and A- participants ( 𝛽 = 0.03, p = .976). Follow-

p pairwise independent-samples t tests revealed that residual FC-BAG

as significantly lower in A + T + participants compared to A-T- ( t = 3.35,

 < .001, see Fig. 2 D). However, the effect of tau was not significant in

he full model controlling for all biomarkers and covariates ( 𝛽 = -1.39,

https://knightadrc.wustl.edu/research/resourcerequest.htm
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Fig. 1. Performance of the FC-predicted brain age model. Scatterplots show the cross-validated model predictions in the training set (A) and in the held-out test set 

(B). Age predicted by the model (y axis) is plotted against true age (x axis). Blue lines represent regression lines. Dashed black lines represent perfect prediction. 

Model performance is evaluated by proportion of variance explained ( R 2 ), root-mean-square error ( RMSE ), and mean absolute error ( MAE ). 

Table 2 

Linear regression models predicting FC-BAG. Model estimates are presented as beta weight (standard error). CDR = Clinical Dementia Rating. ∗ ∗ ∗ p < .001, ∗ ∗ 

p < .01, ∗ p < .05, ̂  p < .10. 

MODELS 

A. Symptomatic AD B. Preclinical Amyloid C. Preclinical Amyloid & Tau D. Preclinical APOE E. Full Model 

Test Sample All analysis sets Cognitively normal only Cognitively normal only Cognitively normal only All analysis sets 

Predictors 

Intercept 32.39 (3.53) ∗ ∗ ∗ 27.81 (4.24) ∗ ∗ ∗ 33.22 (4.59) ∗ ∗ ∗ 30.91 (4.28) ∗ ∗ ∗ 33.54 (4.28) ∗ ∗ ∗ 

CDR > 0 2.88 (0.69) ∗ ∗ ∗ 3.71 (1.17) ∗ ∗ 

Amyloid + -1.92 (0.81) ∗ 0.03 (0.99) 0.15 (0.99) 

Tau + -2.15 (1.01) ∗ -1.39 (0.92) 

APOE 𝜀 4 + -1.88 (0.78) ∗ -1.44 (0.80)ˆ 

Age (y) -0.62 (0.04) ∗ ∗ ∗ -0.56 (0.05) ∗ ∗ ∗ -0.65 (0.05) ∗ ∗ ∗ -0.59 (0.05) ∗ ∗ ∗ -0.65 (0.05) ∗ ∗ ∗ 

Sex = female -1.58 (0.63) ∗ -1.10 (0.79) -1.25 (0.83) -1.15 (0.79) -1.44 (0.76)ˆ 

Education (y) -0.07 (0.11) -0.01 (0.15) -0.01 (0.15) -0.04 (0.15) -0.001 (0.14) 

Race = white 2.51 (0.93) ∗ ∗ 2.18 (1.17)ˆ 2.92 (1.53)ˆ 2.11 (1.17)ˆ 2.74 (1.47)ˆ 
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 = .135, 𝜂p 
2 = 0.01, see Table 2 E), and the effect of amyloid was not

ignificant ( 𝛽 = 0.15, p = .877). 

.5. Reduced FC-BAG in APOE 𝜀 4 carriers 

Residual FC-BAG was normally distributed in all groups defined by

POE genotype (Shapiro-Wilk statistics > 0.98, ps > 0.37). Variance in

esidual FC-BAG did not differ between groups (Levene’s statistic = 0.37,

 = 0.55). 

A final regression model tested the effect of APOE genotype (defined

s cognitively normal APOE 𝜀 4 carriers vs. APOE 𝜀 4 non-carriers) on

C-BAG, controlling for age and demographic covariates (see Table 2 D).

C-BAG was 1.88 years younger in APOE 𝜀 4 carriers compared to non-

arriers ( 𝛽 = -1.88, p = .016, 𝜂p 
2 = 0.02, see Fig. 2 E and F, Table 2 D). The

ffect of APOE was only marginally significant in the full model control-

ing for all biomarkers and covariates ( 𝛽 = -1.44, p = .072, 𝜂p 
2 = 0.01,

ee Table 2 E). 

.6. Comparison of age and AD features 

We used forward sequential feature selection to identify the FC net-

orks that were the strongest predictors of age in a similar GPR model

rained to predict age based on network-level FC (i.e., 153 intra- and

nter-network FC summary measures). To validate this method, the

etwork-level GPR model achieved moderate performance in predicting

ge ( R 

2 = 0.52). Further, SVM models using network-level FC discrim-

nated between symptomatic AD and controls with 74% accuracy, al-
6 
hough classification of preclinical AD was only modestly above chance

accuracy = 55%). 

The forward sequential feature selection algorithm identified 32 FC

eatures that most strongly predicted age. As shown in Fig. 3 A, these

eatures included a variety of intra-network (PMN x PMN, SAL x SAL,

TL x MTL, NA x NA) and inter-network connections (most prominently

ncluding inter-network connections with AUD and BG networks). Only

 FC features were identified as strong predictors of preclinical AD (CER

 CER, PMN x SML, FPN x AUD, and CER x PMN, see Fig. 3 B). Finally,

0 FC features were identified as strong predictors of symptomatic AD

SM x SM, CO x CO, BG x BG, as well as inter-network connections

rominently including the CO and DMN networks, see Fig. 3 C). 

As shown in Fig. 3 D, only one feature was identified as an important

redictor for both healthy age differences and preclinical AD (CER x

MN). However, there was no overlap in features that strongly predicted

ge and symptomatic AD, nor between preclinical and symptomatic AD.

. Discussion 

The present results offer several noteworthy findings. To review,

ur machine learning model successfully predicted chronological age

rom FC data. FC-based age predictions were significantly elevated in

ymptomatic AD compared to cognitively normal controls. Surprisingly,

C-based age predictions were also significantly reduced in preclinical

D compared to biomarker-negative controls, particularly in partici-

ants with positive amyloid and tau pathophysiology, and were also

educed in APOE 𝜀 4 carriers relative to non-carriers. Finally, FC fea-

ures that were strongest predictors of healthy age differences mini-
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Fig. 2. Group differences in FC-predicted brain 

age in the analysis sets. Comparisons are pre- 

sented between cognitively normal (CDR = 0, 

blue) vs. symptomatic AD (CDR > 0, red) (A, B); 

A-T- (blue) vs. A + T- (green) vs. A + T + (gold) 

(C, D); and cognitively normal APOE 𝜀 4 carri- 

ers (blue) vs. non-carriers (green) (E, F). Scat- 

terplots (A, C, E) show predicted vs. true age for 

each group. Colored lines and shaded areas rep- 

resent group-specific regression lines and 95% 

confidence regions. Dashed black lines repre- 

sent perfect prediction. Violin plots (B, D, F) 

show residual FC-BAG (controlling for true age) 

in each group. Group differences are reported 

from pairwise independent-samples t tests. ∗ ∗ ∗ 

p < .001, ∗ ∗ p < .01, ∗ p < .05, ̂  p < .10. 

m  

l  

t

4

 

a  

m  

5  

G  

m  

m  

a  

E  

m  
ally overlapped with predictors of preclinical AD, and did not over-

ap with symptomatic AD. We now discuss each of these findings in

urn. 

.1. Modeling brain age with FC 

Our FC-based model successfully predicted chronological age in an

dult lifespan sample with an MAE of about 8 years. Previous models,
7 
ostly trained on structural MRI data, have reported MAE s as low as 3 to

 years ( Bashyam et al., 2020 ; Cole and Franke, 2017 ; Fisch et al., 2021 ;

ong et al., 2021 ; Liem et al., 2017 ; Wang et al., 2019 ). Thus, the present

odel predicts age with lower accuracy compared to structural-based

odels, which is consistent with other direct comparisons between FC-

nd structural MRI-based age prediction models ( Dunås et al., 2021 ;

avani et al., 2018 ; Liem et al., 2017 ). The observed level of perfor-

ance is more consistent with previous FC-predicted brain age models
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Fig. 3. Strongest FC predictors of (A) healthy age differences in the cognitively normal, amyloid-negative training set, (B) preclinical AD vs. amyloid-negative 

controls, and (C) symptomatic AD vs. amyloid-negative controls. Matrices display intra-network (on diagonal) and inter-network (off diagonal) FC features that were 

identified as strongest predictors via forward sequential feature selection (see methods). Overlapping features (D) are plotted for age, preclinical AD, and symptomatic 

AD. 
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2

n developmental ( Dosenbach et al., 2010 ; Nielsen et al., 2019 ), older

dult ( Eavani et al., 2018 ), and adult lifespan samples ( Dunås et al.,

021 ; Engemann et al., 2020 ; Gonneaud et al., 2021 ; Liem et al., 2017 ),

hich have achieved MAE s from 5 to 11 years. Moreover, although pre-

iction accuracy is of course an essential part of evaluating brain age

odels, our application of this model is primarily motivated by the sen-

itivity of deviations in age prediction to disease status. Notably, BAG

stimates in models with “moderate ” accuracy are more discriminative

f disease states than those from overly “tight ” or “loose ” age predic-

ion models ( Bashyam et al., 2020 ). Thus, the relatively low accuracy of

he current age prediction model does not preclude its application as a

ensitive measure of AD. 

Importantly, our approach utilized conservative pre-processing and

uality assurance methods to minimize the influence of head motion

n FC estimates ( Ciric et al., 2017 ; Power et al., 2014 ). Thus, our model

ikely captures meaningful signal related to age with minimal confound-

ng influence of head motion. One further advantage of our approach

as that we trained the model using data from samples that were well

haracterized in AD biomarkers and clinical assessments of dementia.

ince undetected AD pathology may inflate age differences in FC esti-

ates ( Brier et al., 2014b ), we excluded preclinical AD participants from

he training sets to the greatest extent possible ( Ly et al., 2020 ). Hence,

he patterns of FC differences across the adult lifespan captured in our

odel most likely reflect the influence of healthy age differences with

inimal confounding influence of AD pathology. 
8 
.2. FC-predicted brain age as a marker of symptomatic AD 

As predicted, our model estimates of FC-BAG were significantly ele-

ated in symptomatic AD participants compared to cognitively normal

ontrols. The mean difference in FC-BAG (about 3 years) was relatively

mall compared to previously reported effects in AD and MCI samples

sing structural-based brain age models (about 5 to 10 years) ( Cole and

ranke, 2017 ; Franke and Gaser, 2019 ). However, we note that the

argest of these effects were reported in CDR 1 samples ( Franke and

aser, 2012 ), at a more affected disease stage than the current sample,

ncluding primarily CDR 0.5 individuals. Thus, FC may capture mean-

ngful, but relatively small, signal that is sensitive to the earliest symp-

omatic stages of AD. However, in the 37 participants with CDR > 0.5

n the current sample, FC-BAG was not significantly elevated in CDR >

.5 relative to CDR 0.5, as would be expected by this interpretation. 

Importantly, this FC-related signal may capture complex disruptions

f connectivity within and between networks, as have been previously

escribed in early AD ( Brier et al., 2014a ). This FC signal may thus

e distinct from AD-related atrophy, captured for instance in structural

RI. Hence, multimodal models of age-related functional and structural

eatures may maximize sensitivity to AD. Indeed, recent studies have

emonstrated the unique benefits of multimodal brain-age models in

mproving the accuracy of age prediction ( Liem et al., 2017 ) and cap-

uring heterogeneous patterns of advanced brain aging ( Eavani et al.,

018 ; Smith et al., 2020 ). 
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.3. FC-predicted brain age as a marker of preclinical AD 

Perhaps the most novel aspect of this study was the analysis of brain-

redicted age in the context of preclinical late onset AD pathology,

hich to our knowledge, has not been evaluated in previous brain-

redicted age reports using FC. Surprisingly, we found that FC-BAG was

ignificantly reduced by about 2 years in preclinical AD, compared to

ognitively normal amyloid-negative controls. Interestingly, there was

lso a significant effect in the same direction for APOE 𝜀 4 carriers com-

ared to non-carriers, suggesting that even cognitively normal individ-

als at increased genetic risk of AD demonstrate relatively “younger ”

atterns of FC. These results were in the opposite direction of our pre-

iction that preclinical disruption of FC networks should produce ele-

ated estimates of brain age. We offer some potential interpretations of

his surprising observation. 

First, it is possible that the relative reduction in FC-BAG in pre-

linical AD and the relative elevation in symptomatic AD may re-

ect a biphasic response to AD progression. Similar biphasic responses

ave been proposed in models of functional task activation ( Jagust and

ormino, 2011 ) and functional connectivity ( Wales and Leung, 2021 ).

bservations of hyper-activation and hyper-connectivity, along with the

resent “younger ” appearing pattern of FC in preclinical AD, may re-

ect a compensatory response to early AD pathology, allowing these

ndividuals to maintain normal cognition despite accumulating pathol-

gy ( Cabeza et al., 2018 ). This interpretation predicts that lower FC-

AG should be associated with better cognition in the preclinical AD

ample. Other models posit that amyloid-related hyper-excitability and

au-related hypo-excitability emerge in neuronal circuits via protein-

pecific disruption of neurotransmitters ( Harris et al., 2020 ). How-

ver, previous studies have reported patterns of hyper-connectivity in

articipants with positive amyloid accumulation and low tau, while

he later preclinical stage of elevated tau is associated with hypo-

onnectivity ( Schultz et al., 2017 ; Sepulcre et al., 2017 ). In contrast,

e observed that reduced FC-BAG was most prominent in the A + T +
articipants. Thus, if the present results indeed reflect a biphasic re-

ponse of FC to AD progression, it appears to be lagging behind previous

bservations. 

Alternatively, it is possible that the significant reduction in FC-BAG

ay indeed reflect genuine dysfunction of the functional networks in

esponse to preclinical AD pathology. However, this pattern may be

nconsistent with “older ” appearing patterns of FC, and thus a model

rained to predict age might detect some pathological variance as ap-

earing “younger. ” Consistent with this interpretation, we identified

inimal overlap in feature importance for FC networks predictive of

ge and AD, as discussed below. Further, the relative effects of preclin-

cal AD and APOE 𝜀 4 positivity both went in the same negative direc-

ion, suggesting that both AD biomarker pathology and genetic risk are

ssociated with reduced FC-BAG in cognitively normal samples. How-

ver, the effects we observed in preclinical AD and APOE 𝜀 4 were only

arginally significant in the full model, which included terms for all

iomarker and genetic factors, which may be collinear. Further, these

ffects were relatively small, and thus may be driven by sample-specific

oise, or the younger age prediction may be driven by statistical ar-

ifacts related to regression dilution (see also 4.5 Limitations). Hence,

uture studies should attempt to replicate these results in independent

amples. 

.4. Predictive FC features of age and AD 

Importantly, although one inter-network FC feature (PMN x CER)

as identified as a strong predictor for both healthy age differences

nd preclinical AD, overall, age and AD were predicted by mostly non-

verlapping networks. Thus, AD likely produces disruptions in FC net-

orks that are distinct from those disrupted in healthy age differences,

s opposed to an accelerated age-like pattern. Nevertheless, we found

hat the model trained on age differences was indeed sensitive to both
9 
reclinical and symptomatic AD, as well as genetic risk of AD. This re-

ult may reflect a unique benefit of the brain-predicted age approach

n comprehensively summarizing complex neuroimaging indicators of

brain health ” into a simple summary estimate. 

.5. Limitations 

One limitation of this study is that the training set included MRI

cans merged across independent datasets, spanning a range of collec-

ion sites, scanner models, and acquisition sequence parameters. These

ifferences may introduce noise and/or confounding variance into the

C features. We have attempted to mitigate this problem by: (1) limiting

he sample to only data from Siemens 3T scanners using similar proto-

ols; (2) processing all MRI data through common pipelines and quality

ssessments; and (3) statistically harmonizing across different sites and

canners before combining the datasets. 

Unsurprisingly, both preclinical and symptomatic AD groups were

ignificantly older than the amyloid – controls. We have attempted

o correct for this difference by including age as a covariate in

ur statistical models, as has been done in similar reports (e.g.,

ole et al. 2017 , Le et al. 2018 ). This approach limits interpretation

f the group effect, as group variance and age variance are intermixed

 Miller and Chapman, 2001 ). However, we note that differences in FC-

AG went in opposite directions for preclinical and symptomatic AD

roups. Thus, age-related biases cannot fully account for the present

esults. 

Additionally, we only conducted cross-sectional analyses of FC-BAG.

ongitudinal analyses would be useful to address intra-individual relia-

ility and trajectory of brain age estimates as AD pathology progresses

ver time, and should be investigated in future studies. 

Further, although the DIAN and Knight ADRC samples were well

haracterized in assessments of dementia and AD biomarkers, these

easures were not available in all samples. We minimized the chance

f including participants with undiagnosed AD pathology by exclud-

ng participants over the age of 50 if these measures were unavailable.

uture brain-predicted age models would benefit by using more richly

haracterized datasets to exclude potentially confounding age-related

athology. 

Tau positivity was determined in this study based on a median split

f CSF pTau 181. Future studies might improve upon this approach by

sing an a priori validated threshold of positivity and/or using tau PET.

Feature selection analyses were based on models that only achieved

odest (74% for symptomatic AD) to poor (55% for preclinical AD)

lassification accuracy. Thus, the features identified as strong predictors

especially of preclinical AD) may be unstable. 

Finally, although the Ances lab controls were relatively diverse,

articipants in other samples were mostly white and highly edu-

ated. Hence, this model may not be generalizable to broader sam-

les. Future models would benefit by using more representative training

amples. 

. Conclusions 

Overall, the present study suggests that FC is sensitive to differ-

nces across the adult lifespan and can be used to successfully predict

rain age, even after carefully controlling for head motion and preclin-

cal AD. Consistent with structural-based models, FC-predicted brain

ge might be sensitive in detecting symptomatic AD. Further, our re-

ults suggest that FC-BAG might also be sensitive to preclinical AD, as

ell as AD genetic risk, although interpretation of the unexpected direc-

ion of this relationship requires further investigation. Although age and

D were predicted by mostly non-overlapping FC features, the present

C-predicted brain age model significantly detected deviations in both

ymptomatic and preclinical AD. Hence, FC may provide useful, dis-

inct signal in developing models of comprehensive brain health to be
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sed as biomarkers of AD, along with other neurological and psychiatric
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