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ABSTRACT: Spinocerebellar ataxia type 17 or ATX-
TBP is a CAG/CAA repeat expansion disorder character-
ized by marked clinical heterogeneity. Reports of
affected carriers with subthreshold repeat expansions
and of patients with Parkinson’s disease (PD) with
expanded repeats have cast doubt on the established
cutoff values of the expansions and the phenotypic
spectrum of this disorder. The objective of this system-
atic review was to explore the genotype–phenotype rela-
tionships for repeat expansions in TBP to delineate the
ATX-TBP phenotype and reevaluate the pathological
range of repeat expansions. The International Parkinson
and Movement Disorder Society Genetic Mutation Data-
base (MDSGene) standardized data extraction protocol
was followed. Clinically affected carriers of reported
ATX-TBP expansions were included. Publications that
contained repeat sizes in screened cohorts of patients

with PD and/or healthy individuals were included for a
separate evaluation of cutoff values. Phenotypic and
genotypic data for 346 ATX-TBP patients were curated.
Overall, 97.7% of the patients had ≥41 repeats, while
99.6% of patients with PD and 99.9% of healthy individ-
uals had ≤42 repeats, with a gray zone of reduced pene-
trance between 41 and 45 repeats. Pure parkinsonism
was more common in ATX-TBP patients with 41 to
45 repeats than in the group with ≥46 repeats, which
conversely more often presented with a complex pheno-
type with mixed movement disorders. An updated
genotype–phenotype assessment for ATX-TBP is pro-
vided, and new repeat expansion cutoff values of
reduced penetrance (41–45 expanded repeats) and full
penetrance (46–66 expanded repeats) are proposed.
These adjusted cutoff values will have diagnostic and
counseling implications and may guide future clinical trial
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protocol. © 2022 The Authors. Movement Disorders pub-
lished by Wiley Periodicals LLC on behalf of International
Parkinson and Movement Disorder Society.
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Introduction

Spinocerebellar ataxia (SCA) type 17 (SCA17), cur-
rently referred to as ATX-TBP by the International
Parkinson and Movement Disorder Society Task Force
on Genetic Nomenclature in Movement Disorders,1 is
an autosomal dominant cerebellar ataxia caused by a
polyglutamine-encoding CAG/CAA repeat expansion
within the TATA box-binding protein (TBP) gene.2,3

The average age of onset is in the fourth or fifth decade
of life, and the typical phenotype includes cerebellar
ataxia associated with one or more of the following clini-
cal manifestations: chorea, dystonia, parkinsonism, pyra-
midal signs, cognitive impairment, and psychiatric
symptoms such as psychosis and depression.4,5 ATX-TBP
is one of the Huntington’s disease–like syndromes.6,7

In 2010, the cutoff values for repeat expansions
within TBP reported by the European Molecular
Genetics Quality Network best practice guidelines for
molecular genetic testing of SCAs8 were set as normal
(25–42 CAG/CAA repeats), reduced penetrance (RP;
43–48 repeats), and full penetrance (FP; 49–66 repeats),
respectively. However, establishing an unequivocal cut-
off for a disease-causing repeat expansion has been a
challenging task in ATX-TBP because many reports
suggested that the threshold for pathological expan-
sions is lower.9-13 Also, atypical phenotypes have been
reported for ATX-TBP, such as the (inconsistent) find-
ing of repeat expansions in patients considered to have
Parkinson’s disease (PD),14-17 casting doubt on the
breadth of the phenotypic spectrum of ATX-TBP.
These controversial findings motivated us to systemi-
cally evaluate the reported ATX-TBP patients to study
the full phenotypic spectrum, extract potential
genotype–phenotype correlations, and reconsider the
cutoff values for expanded TBP repeats.

Subjects and Methods
Search Strategy and Eligibility Criteria

We conducted a systematic literature search and data
extraction procedure following the PRISMA guideline18

and the standardized International Parkinson and
Movement Disorder Society Genetic mutation database
(MDSGene, https://www.mdsgene.org/) protocol.19,20

The search term for the literature search in PubMed up
to June 12, 2020, and updated in April 20, 2022, is
listed in Supporting Information Methods S1. Articles

in English were assessed for eligibility using the title,
abstract, or full text, as necessary. Every publication
with genetic and clinical data describing at least one
clinically affected carrier of a heterozygous CAG/CAA
repeat expansion in the TBP gene was included in this
study. Data from asymptomatic individuals were not
extracted. Patients with biallelic repeat expansions and
with pathogenic variants or repeat expansions in other
genes were excluded from the analysis. A patient was
considered clinically affected if there was documented
presence of gait and/or limb ataxia, or in the absence of
ataxia (eg, pure parkinsonism or chorea associated with
dementia) if the patient was explicitly labeled as clini-
cally affected by the authors. Additional cerebellar
symptoms, such as dysarthria and/or eye movement
abnormalities, were supportive, but not mandatory. In
parallel, publications containing data on CAG/CAA
repeat size ranges in the TBP gene in cohorts of patients
with PD and/or healthy individuals were included for a
separate analysis of the best cutoff values for molecular
genetic testing of SCAs.8 All eligible articles were
screened for references to additional articles on affected
patients. The data collection process of demographic,
genetic, clinical, and imaging data was conducted
according to the standard protocol.19 A list of the
extracted clinical variables is provided in Supporting
Information Methods S2. All available information
was combined in case a patient had been reported
more than once in subsequent publications. Similarly,
clinical features that were described differently in the
literature were combined into a single term following
the Human Phenotype Ontology terminology (eg,
cognitive decline, cognitive impairment, memory
impairment, dementia, and intellectual disability
were combined into mental deterioration). Discrepan-
cies were resolved by discussion among coauthors
involved in the data extraction process until reaching
consensus. Patients with ataxia were evaluated for
the presence of other associated clinical features or
were categorized as pure ataxia if no other clinical
manifestations were present, except for postural
instability, head titubation, dysarthria, dysphagia,
diplopia, nystagmus, and/or saccadic eye movement
abnormalities. Similarly, patients were categorized as
pure parkinsonism, chorea, dystonia, or myoclonus if
ataxia or other movement disorders were absent
(other clinical manifestations, such as mental deterio-
ration or behavioral abnormalities, were allowed to
be present).
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Records identified from:
PubMed (n = 390)
Literature references (n = 8)

Records removed before full text screening:

Records removed for other reasons
(e.g. publications not related to the topic)
(n = 251)

Records screened
(n = 139)

Records excluded due to lack of original (e.g. 
Reviews or Editorials) or individual data (n = 32)

Studies assessed for eligibility
(n = 81)

Studies excluded:

- Only homozygous 
cases (n = 4)

- Digenic inheritance
(n = 4)

Studies included in review
(n = 73)

Identification of studies

Identification

Screening

Included

Studies included to extract 
repeat size ranges from PD 
patients and healthy controls
(n = 26)

FIG. 1. Flow diagram of the review process. PD, Parkinson’s disease. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Distribution of the number of patients reported per CAG/CAA repeat size in the expanded allele. x axis: number of CAG/CAA repeats; y axis:
number of patients. Eight patients with 33, 34, or 38 repeats were excluded as explained in the Results section.
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Statistical Analyses
Statistical analyses comparing demographic, genetic,

clinical, and imaging data between groups of patients
were performed with the SPSS statistical package (ver-
sion 25; IBM Corp., Armonk, NY, USA). Descriptive
data are presented as mean � standard deviation or
proportions out of the total number of non-missing
observations. Proportions for the clinical features at
disease onset were calculated in relation to the total
sample of each group instead of the total number of

non-missing observations because it better reflects how
symptoms at disease onset are commonly reported. The
Shapiro–Wilk test was used to assess the normal distri-
bution of the data. Analysis of variance was used to
assess between-group differences in quantitative vari-
ables that were normally distributed; otherwise, the
Mann–Whitney U test was used. Chi-square test was
conducted for categorical variables, and Bonferroni
post hoc comparisons test was used when three groups
of patients were compared. According to the statistical

TABLE 1 Main characteristics of ATX-TBP patients according to the newly proposed clusters

Characteristics
RP-rev (41–45 repeats), n = 200

[missing data]
FP-rev (46–66 repeats), n = 138

[missing data] P value

Genetic data

CAG/CAA expanded repeats
(mean � SD; range)

42.5 � 1.5; 41–45 [0] 51.2 � 3.7; 46–66 [0] <0.001

CAG/CAA normal allele
(mean � SD; range)

36.8 � 1.3; 32–40 [42] 36.9 � 1.7; 32–40 [70] 0.5

Interrupted repeat alleles 58 (86.6%) [133] 42 (70.0%) [78] 0.019

Demographic data

Female sex 83 (46.4%) [11] 68 (53.1%) [10] 0.4

Race 118 [82] 53 [85]

Asian 100 (84.7%) [82] 18 (34.0%) [82] <0.001

White 17 (14.4%) 22 (41.5%) <0.001

Mixed/other 1 (0.9%) 12 (22.6%) <0.001

Native American 0 (0%) 1 (1.9%) 0.5

Family history 46 (31.3%) [53] 87 (79.8%) [29] <0.001

Age at disease onset (any first
symptom), years

47.2 � 14.1 [106] 34.5 � 12.7 [25] <0.001

Age at movement disorder onset,
years

47.8 � 14.1 [113] 33.8 � 12.0 [34] <0.001

Age at onset of any other clinical
feature, years

38.2 � 11.5 [178] 32.8 � 12.0 [109] 0.1

Age at examination, years 57.5 � 12.9 [37] 42.5 � 13.4 [49] <0.001

Disease duration, years 7.1 � 8.2 [111] 10.7 � 8.3 [34] 0.003

Clinical features at disease onseta

Ataxia 33 (16.5%) 40 (29.0%) 0.005

Behavioral abnormality 12 (6.0%) 23 (16.7%) 0.002

Mental deterioration 4 (2.0%) 17 (12.3%) <0.001

Chorea 5 (2.5%) 10 (7.2%) 0.036

Parkinsonism 7 (3.5%) 1 (0.7%) 0.1

Dystonia 2 (1.0%) 7 (5.1%) 0.027

aProportions for the clinical features at disease onset were calculated in relation to the total sample of each group instead of the total number of non-missing observations because
it better reflects how symptoms at disease onset are commonly reported. Statistically significant values are shown in bold.
Abbreviations: FP-rev, full penetrance-revised; RP-rev, reduced penetrance-revised; SD, standard deviation.
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distribution, Spearman’s rank correlation coefficient
was used to correlate variables. The critical α value was
conventionally set at 0.05.

Results

The flow diagram of the review process is depicted in
Figure 1. The literature search yielded a total of
390 citations, of which 139 were screened after remov-
ing publications not related to the topic. A total of
73 studies were eligible for data extraction on patients
with repeat expansions in TBP and are listed in
Supporting Information Results S1. From these publica-
tions, clinical and genetic data were obtained from
346 patients. The distribution of the CAG/CAA repeats
in the expanded allele is shown in Figure 2. The mean
CAG/CAA repeat numbers in the expanded allele were
higher in patients with ataxia, chorea, or dystonia than
in those without these movement disorders (Supporting
Information Table S1). In contrast, it was lower in
patients with pure ataxia, pure parkinsonism, or pure
dystonia than in those without pure movement disor-
ders (Supporting Information Table S1). The number of
CAG/CAA repeats in the expanded allele was inversely
correlated with the age at disease onset (r = �0.45;
P < 0.001), irrespective of the presenting symptom
being ataxia or another movement disorder (r = �0.51;
P < 0.001) or any other clinical feature (eg, mental dete-
rioration) (r = �0.37; P = 0.01). The number of
CAG/CAA repeats in the nonexpanded (normal) allele
(≤40 repeats) was not correlated with the age at disease
onset (r = 0.15; P = 0.1). Interruptions in the
CAG/CAA repeat expansions were not correlated with

age at disease onset (n = 102; r = 0.07; P = 0.49) or
with the presence of ataxia (n = 124; r = �0.14;
P = 0.12) or other clinical features.
Following the European Molecular Genetics Quality

Network best practice guidelines for molecular genetic
testing of SCAs,8 the current standard, we initially clas-
sified the included patients into three groups: a normal
or nonpathogenic (NP) group including 118 patients
with 33 to 42 CAG/CAA repeats, an RP group with
129 patients carrying 43 to 48 expanded repeats, and
an FP group including 99 patients with 49 to
66 expanded repeats. Patients in the NP group had a
higher frequency of Asian ethnicity (93.8% vs. 70.0%
in the RP group and 25.0% in the FP group;
P < 0.001), a lower frequency of a positive family his-
tory of ATX-TBP (17.5% vs. 53.7% in the RP group
vs. 84.2% in the FP group; P < 0.001), and a later age
at disease onset (47.7 � 14.6 vs. 42.7 � 13.2 years in
the RP group and 31.8 � 13.1 years in the FP group;
P < 0.001). According to these current cutoff values,
the main clinical features of ATX-TBP patients are
shown in Supporting Information Table S2.
The comparison of the CAG/CAA repeat sizes in

patients with ATX-TBP and patients with PD and
healthy individuals (the latter two groups are shown in
Supporting Information Table S3) demonstrated that:
(1) 338/346 (97.7%) ATX-TBP patients had ≥41
repeats (8 patients with 33, 34, or 38 repeats that
lacked the typical above-mentioned ATX-TBP pheno-
typic characteristics were all reported in a single
article,21 and an alternative cause of genetic ataxia can-
not be ruled out); (2) almost all patients with PD
(11,742/11,757, 99.9%) and healthy individuals
(16,748/16,759, 99.9%) had ≤42 repeats in the TBP

FIG. 3. Schematic representation of the main clinical features during overall disease course. x axis: percentage of patients; y axis: clinical
features according to reduced penetrance-revised (RP-rev) group and full penetrance-revised (FP-rev) group. [Color figure can be viewed at
wileyonlinelibrary.com]
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gene; and (3) there is a gray zone between 41 and
45 repeats with RP, because 64/12,845 (0.5%) healthy
subjects were reported within this range of repeats. In
other words, in the data we extracted, we found no
firm evidence of TBP-related disease in those with
repeats of ≤40, and no healthy subjects with repeats
greater than 45. These findings led us to reconsider the
cutoff values for ATX-TBP, as previously mentioned,
and motivated us to compare the data from the
included patients following a new set of CAG/CAA
repeat size clusters as follows: 41 to 45 expanded
repeats (RP-revised [RP-rev]) group and 46 to
66 expanded repeats (FP-revised [FP-rev] group). As
shown in Figure 2, the most frequent CAG/CAA repeat
lengths in the expanded allele in the RP-rev and FP-rev
groups were 41 and 46, respectively. Table 1 shows the
main genetic, demographic, and clinical data. The full
data are presented in Supporting Information Table S4
(clinical manifestations at disease onset) and Supporting
Information Table S5 (clinical characteristics during the
course of the disease). Figure 3 shows a schematic repre-
sentation of the prevalence of the main clinical features
present up to time of evaluation in both the RP-rev and
FP-rev groups (mean disease duration was 7.1 � 8.2
vs. 10.7 � 8.3 years, P = 0.003, respectively). Patients in
the RP-rev group more commonly manifested pure par-
kinsonism than patients in the FP-rev group (Table 2). A
complementary analysis of the frequency of combined
movement disorders confirmed that ataxia combined
with other movement disorders was more frequent in the
FP-rev group (48.5%) than in the RP-rev group (20.9%)
(P < 0.001). Different types of movement disorders com-
binations for the two groups are given in Supporting
Information Table S6. Also, mental deterioration and
behavioral abnormalities were significantly more

common in the FP-rev group, both at onset and during
the further course of the disease.
Asian race was more common in the RP-rev group

than in the FP-rev group, and exploring the influence of
Asian race on the main clinical features in the RP-rev
group showed that ataxia, mental deterioration, and
chorea were less frequent in Asian patients than in non-
Asians, whereas parkinsonism was more common in
Asian patients (Supporting Information Table S7).
Analysis of the imaging studies showed that the FP-

rev group had more frequent cerebellar, brainstem, and
cerebral atrophy than the RP-rev group (Supporting
Information Table S8). Patients with pure parkinsonism
had less frequent cerebellar atrophy than patients with
parkinsonism combined with ataxia (8.2% vs. 75.0%,
P < 0.001, respectively).

Discussion

This systematic review provides a comprehensive
evaluation of genotype–phenotype relationships in a
large sample of 346 reported ATX-TBP patients. Based
on the analysis of CAG/CAA repeat sizes in ATX-TBP
patients, patients with PD, and healthy controls, we
identified three new clusters of repeat expansion sizes
that might lead to reconsidering the diagnostic cutoffs
for ATX-TBP.8 These findings allowed us to propose
the following allele classification: (1) normal or NP
expansion for alleles ≤40 repeats, (2) RP-rev for alleles
ranging from 41 to 45 repeats, and (3) FP-rev for alleles
ranging from 46 to 66 repeats. It must be acknowledged
that the definition of normal and pathogenic size ranges
remains problematic, especially if the data available are
based on case reports or case series or small cohort studies
in racially or ethnically different populations and with
variable methodological repeat expansion testing accura-
cies obtained usually by repeat-spanning polymerase chain
reaction–based methods.8 Also, although some studies
have explicitly included a clinical reexamination of sup-
posedly healthy subjects with an RP-rev expansion,17 this
was not the case for the majority.14-16,22-26 Notably, when
applying the current diagnostic cutoffs for ATX-TBP,8 a
substantial number of patients in the NP group had clini-
cal manifestations, reinforcing the necessity to reestablish
the repeat size cutoffs. In contrast, none of the patients
with alleles ≤40 repeats presented the typical ATX-TBP
phenotypic characteristics.
On comparisons of phenotypes according to these

new clusters, we found that patients in the FP-rev group
(46–66 expanded repeats) more frequently exhibit the
characteristic, complex clinical picture of ATX-TBP,
characterized by ataxia combined with chorea and
other neurological features, including mental deteriora-
tion, behavioral abnormalities, and slow saccadic eye
movements, as well as an earlier disease onset and a

TABLE 2 Relationship between ataxia and other movement disorders
by newly proposed clusters

Clinical
features

RP-rev (41–45
repeats),
n = 200

[missing data]

FP-rev (46–66
repeats),
n = 138

[missing data] P value

Pure ataxia 17 (14.5%) [83] 17 (13.7%) [14] 0.5

Pure
parkinsonism

70 (55.1%) [73] 3 (7.7%) [99] <0.001

Pure chorea 10 (8.3%) [79] 2 (3.1%) [73] 0.1

Pure dystonia 3 (25.0%) [188] 2 (4.5%) [94] 0.1

Pure
myoclonus

0 (0%) [196] 1 (14.3%) [131] 0.6

Note: Pure ataxia: ataxia in the absence of other clinical features, except for pos-
tural instability, head titubation, dysarthria, dysphagia, diplopia, nystagmus, or sac-
cadic eye movement abnormalities. Pure parkinsonism, chorea, dystonia, and/or
myoclonus if ataxia was absent. Statistically significant values are shown in bold.
Abbreviations: FP-rev, full penetrance-revised; RP-rev, reduced penetrance-
revised; SD, standard deviation.

6 Movement Disorders, 2022

R O S S I E T A L

 15318257, 0, D
ow

nloaded from
 https://m

ovem
entdisorders.onlinelibrary.w

iley.com
/doi/10.1002/m

ds.29278 by H
IN

A
R

I - A
R

G
E

N
T

IN
A

, W
iley O

nline L
ibrary on [17/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



positive family history of ATX-TBP, in comparison
with patients in the RP-rev group (41–45 repeats). In
some publications, nonataxia movement disorders such
as dystonia were more frequently found in patients with
larger CAA/CAG repeat expansions (eg, ≥50) within
the TBP gene,3,27-31 whereas parkinsonism and chorea
were typically found in patients with shorter repeat
sizes.29,32-34 However, a sizable phenotype–genotype
correlation study performed on 30 ATX-TBP patients
was unable to identify any particular phenotypic trait
for particular CAG/CAA repeat compositions or
lengths.35 In addition, our analysis of 346 patients does
not support the existence of a particular movement dis-
order associated with a specific repeat size cluster,
except for chorea that was more frequent in the FP-rev
group. In other words, dystonia was also observed in
patients with small expansions,27,33,36,37 and parkin-
sonism and chorea were also present in patients with
large expansions.4,30,38-41 ATX-TBP patients with par-
kinsonism showed, in some cases, a phenotype resem-
bling typical PD with response to dopaminergic therapy
and, in other cases, a clinical picture indistinguishable
from multiple system atrophy (MSA-C or MSA-P) with
partial or no response to dopaminergic therapy and,
in some, characteristic imaging findings of MSA, such
as the hyperintense putaminal rim or the hot cross bun
sign.13,32,33,39,42-46 Dopaminergic single-photon emission
computed tomography/positron emission tomography
imaging studies demonstrated presynaptic and postsyn-
aptic dopaminergic deficits involving the nigrostriatal
pathway. However, presynaptic dopaminergic dysfunc-
tion was not consistently found,29 which might explain
the limited or absent response to dopaminergic therapy
in some ATX-TBP patients with parkinsonism.42,45 The
limited information on the response of parkinsonian
signs to dopaminergic therapy hampered further ana-
lyses. Notably, we found that patients with pure parkin-
sonism were more likely to have repeat expansions in
the RP-rev range, were of Asian ethnicity, and had less
frequently a positive family history and cerebellar atro-
phy than patients in whom parkinsonism was combined
with ataxia.
Patients with RP or small-range (41–49 repeats)

CAG/CAA expansions were recently reviewed by others
and were found to have a highly variable clinical pre-
sentation, ranging from pure cerebellar ataxia to a PD-
like phenotype.47 Gait ataxia was the most frequent
feature. Unlike our study, this review did not include
patients with larger expansions (≥50 repeats). Still, the
authors did extract phenotypic variables from some
screening studies for TBP expansions in patients with
PD, which we included only for CAG/CAA repeat sizes
analysis of the reported cutoff values. Instead, we have
evaluated phenotypic traits of patients considered to
have an ATX-TBP mutation who could exhibit parkin-
sonism as part of their clinical picture. Of importance

in ATX-TBP patients with RP, a recent study excitingly
showed a genetic factor that modulates the penetrance
of intermediate TBP alleles: patients with 41 to
46 repeat expansions almost universally (30/31 cases)
carried a heterozygous pathogenic variant in the ATX-
STUB1 gene (MIM #607207), whereas such variants
were absent in all 12 patients with 47 to 54 repeat
expansions and in 37 healthy individuals with repeat
sizes in the RP range.48 All patients with the combined
RP-TBP/STUB1 genotype exhibited a phenotype simi-
lar to that of patients with ≥47 repeat expansions that
lacked heterozygous pathogenic variants in the STUB1
gene. Further studies are required to confirm this
digenic inheritance pattern for ATX-TBP,48-50 but these
data suggest monogenic dominant disorder for TBP
alleles with ≥47 repeats and a digenic TBP/STUB1 dis-
ease for intermediate TBP expansions. Although rare,
the coexistence of TBP expansions and expanded alleles
in other ataxia genes has also been reported, such as
combined TBP/ATXN3 repeat expansions.51 Also, a
patient with PLA2G6-related neurodegeneration and
42 repeat expansions in the TBP gene was recently
reported who exhibited a phenotype consisting of
ataxia, spasmodic torticollis, parkinsonism responsive
to levodopa, and pyramidal signs and who showed
marked cerebellar atrophy.52 These data also point to a
limitation of our work, because we included reported
carriers of RP TBP alleles in whom the presence of
STUB1 or other genetic variants has not been investi-
gated, rendering this at present a counseling challenge.
In this study, we excluded some reported, rare cases

with homozygous CAG/CAA repeat expansions in the
TBP gene.35,53-58 Notably, a more severe phenotype
and faster disease progression in comparison with the
heterozygous patients was described in most of these
homozygous patients,35,54,55,57 indicating that a gene
dosage effect may contribute to enhanced phenotypic
severity because it occurs in some other SCA subtypes,
such as ATX-ATXN3 and ATX-CACNA1A.59-61

Anticipation, known as the tendency for clinical fea-
tures to worsen and/or appear at a younger age because
of expansion of the repeat from generation to genera-
tion, is unusual in ATX-TBP compared with other SCA
subtypes, such as ATX-ATXN1,62 ATX-ATXN2,63

ATX-ATXN3,64 and ATX-ATXN7.65 The occasional
presence of CAA interruptions within the TBP CAG
repeat configuration stabilizes the repeat in germline
transmission.66-68 By contrast, uninterrupted alleles are
unstable, associated with anticipation, and show an
expansion bias that increases with paternal age.67,69 In
our analysis, we found that larger CAA/CAG repeats in
the expanded allele were inversely correlated with the
age at disease onset. We found that interruptions were
frequent in the FP-rev group but significantly less than in
the RP-rev group. We observed no modifying effect on
onset age or other clinical features for the presence
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versus absence of interruptions. In addition, larger repeat
sizes in the expanded allele were associated with ataxia
combined with other movement disorders, such as cho-
rea or dystonia, whereas smaller expansions were more
commonly present in patients with pure ataxia, pure par-
kinsonism, or dystonia (without ataxia). The presence of
interruptions was also not associated with a particular
clinical feature, contrary to, for example, parkinsonism
in ATX-ATXN2.70-72 This may explain the observation
of a similar frequency of parkinsonism between the
RP-rev and the FP-rev groups, despite more common
interruptions in the former group. In contrast with other
SCA subtypes, such as ATX-ATXN1, ATX-CACNA1A,
and ATX-ATXN7 that exhibit an interaction between
the expanded and normal alleles in trans and age at
onset,73 we found that the number of CAG/CAA repeats
in the nonexpanded (normal) allele was not correlated
with the age at disease onset.
A limitation of this study is the high proportion of

missing data due to incomplete descriptions of patients
in the literature, as was also highlighted in previous
MDSGene systematic reviews for PD genes19,74 or dys-
tonia genes.75 This problem does not allow a precise
and reliable analysis or interpretation of less common
clinical features. Still, in our opinion, it does not affect
the interpretation of results for the most frequent clini-
cal manifestations of ATX-TBP and the main conclu-
sions of this study. The fact that the dataset of this
review mostly consists of case reports and family stud-
ies, which are less prone to missing data compared with
mutational screening studies, reinforces the assumption
that the missing data are probably because these data
(eg, certain clinical manifestations) were absent in the
reported patients. Lastly, the lack of knowledge of the
STUB1 status in the RP-rev group is another limitation
as mentioned earlier.
Taken together, this MDSGene systematic review on

ATX-TBP provides a comprehensive overview of demo-
graphic, genetic, clinical, and imaging findings and pro-
poses new repeat expansion ranges of RP (41–45
expanded repeats) and FP (46–66 expanded repeats)
that are relevant for diagnostic purposes. Any patient
who presents with features of the wide ATX-TBP spec-
trum (varying from the classic clinical picture of ataxia
combined with another movement disorder, psychiatric
problems, or cognitive decline to more atypical features
such as prominent or predominant pure parkinsonism)
and who has 46 to 66 repeats in the ATX-TBP gene
can be considered to have TBP-related disease. For such
patients with 41 to 45 repeats expansions, additional
evidence is needed, eg, through segregation studies,
exclusion of alternative (genetic) diagnoses, and per-
haps the presence of STUB1 variants.
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