NEUROIMAGING

Comparison of amyloid accumulation between Down syndrome and autosomal-dominant Alzheimer disease

Anna H. Boerwinkle¹ | Brian A. Gordon¹ | Julie K. Wisch¹ | Shaney Flores¹ | Rachel L. Henson² | Omar Hameed Butt¹ | Charles D. Chen¹ | Tammie L.S. Benzinger¹ | Anne M. Fagan¹ | Benjamin L Handen³ | Bradley T Christian⁴ | Elizabeth Head⁵ | Mark Mapstone⁵ | William E Klunk³ | Michael S Rafij⁶ | Sid E. O'Bryant⁷ | Julie C Price⁸ | Nicole Schupf⁹ | Charles M Lavmon³ | Sharon J Krinsky-McHale¹⁰ | Florence Lai¹¹ | H. Diana Rosas¹¹ | Sigan L Hartlev⁴ | Shahid Zaman¹² | Ira T Lott⁵ | Wayne Silverman⁵ Adam M. Brickman⁹ Joseph H. Lee⁹ Ricardo Francisco Allegri¹³ | Sarah Berman³ | Jasmeer P. Chhatwal¹¹ | Helena C Chui¹⁴ | Carlos Cruchaga¹⁵ | Martin R. Farlow¹⁶ | Nick C Fox¹⁷ | Alison Goate¹⁸ | Gregory S Day¹⁹ | Neill R. Graff-Radford¹⁹ | Mathias Jucker²⁰ | Jae-Hong Lee²¹ | Johannes Levin²² | Ralph N Martins²³ | Hiroshi Mori²⁴ | Richard J. Perrin¹ | Stephen P. Salloway²⁵ | Raquel Sanchez-Valle²⁶ | Peter R Schofield²⁷ | Chengije Xiong¹ | Celeste M. Karch¹ | Jason J. Hassenstab²⁸ | Eric McDade¹ Randall J. Bateman¹ Beau M Ances¹ the Alzheimer's Biomarker Consortium-Down Syndrome and the Dominantly Inherited Alzheimer Network

¹Washington University in St. Louis School of Medicine, St. Louis, MO, USA

²Washington University in St. Louis, Saint Louis, MO, USA

³University of Pittsburgh, Pittsburgh, PA, USA

⁴University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

⁵University of California, Irvine, Irvine, CA, USA

⁶Alzheimer's Therapeutic Research Institute, San Diego, CA, USA

⁷University of North Texas Health Science Center, Fort Worth, TX, USA

⁸Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

⁹Columbia University Irving Medical Center, New York, NY, USA

¹⁰New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA

¹¹Massachusetts General Hospital, Boston, MA, USA

¹²University of Cambridge, Cambridge, United Kingdom

¹³Fleni, Buenos Aires, Argentina

¹⁴University of Southern California, Los Angeles, CA, USA

¹⁵Washington University School of Medicine, St Louis, MO, USA

¹⁶Indiana University School of Medicine, Indianapolis, IN, USA

 17 University College London Institute of Neurology, London, United Kingdom

¹⁸Icahn School of Medicine at Mount Sinai, New York, NY, USA

¹⁹Mayo Clinic, Jacksonville, FL, USA

²⁰University of Tuebingen, Tuebingen, Germany

²¹Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea

²²Ludwig-Maximilians-Universität München, Munich, Germany

²³Edith Cowan University, Joondalup, Western Australia, Australia

²⁴Osaka City University Medical School, Osaka, Japan

²⁵Butler Hospital, Providence, RI, USA

²⁶Universitat de Barcelona, Barcelona, Spain

²⁷University of New South Wales, Kensington, NSW, Australia

²⁸Washington University in St. Louis, St. Louis, MO, USA

Correspondence

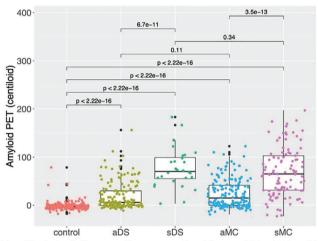
Anna H. Boerwinkle, Washington University in St. Louis School of Medicine, St. Louis, MO, USA. Email: anna.boerwinkle@wustl.edu

Abstract

Background: Given the triplication of chromosome 21 and the location of the amyloid precursor protein gene on chromosome 21, almost all adults with Down syndrome (DS) develop Alzheimer disease (AD)-like pathology and dementia during their lifetime. Comparing amyloid accumulation in DS to autosomal dominant AD (ADAD), another genetic form of AD, may improve our understanding of early AD pathology development.

Method: We assessed amyloid positron emission tomography (PET) imaging in 192 participants with DS and 33 sibling controls from the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) and 265 mutation-carriers (MC) and 169 familial controls from the Dominantly Inherited Alzheimer Network (DIAN) (**Table 1**). We calculated regional standard uptake value ratios (SUVR) using a cerebellar cortex reference region and converted global amyloid burden SUVR to centiloids. We compared amyloid PET by cognitive status and estimated-years-to-symptom-onset (EYO). EYO was calculated for DIAN participants by subtracting their age from parental age of symptom onset and for ABC-DS participants by subtracting their age from 50.2 years, a published average age of symptom onset in a large sample of individuals with DS (Fortea et al., 2020). In a subset of participants, we assessed the relationship between amyloid PET and CSF A β 42/40.

Result: The relationship between CSF $A\beta 42/40$ and amyloid PET was similar in DS and MC participants (**Figure 1**). We did not observe significant differences between MC and DS grouped by cognitive status (**Figure 2**). However, when assessed over EYO, global amyloid burden was significantly elevated in MC at EYO \geq -23 but was not elevated in DS until EYO \geq -15 (**Figure 3**). We observed early cortical and subcortical amyloid PET increases in both groups, but we also measured some regional differences in amyloid PET changes between MC and DS, specifically in the medial occipital region (**Figure 4 and 5**).


Conclusion: These results demonstrate similarities in the relationship between amyloid biomarkers and the levels of amyloid accumulation in ADAD and DS. However, we also observed a 5-10 year delay and some regional differences in amyloid accumulation in DS. This is important for future clinical trials to consider when recruiting participants and determining treatment efficacy.

	Controls (n = 202)	Down syndrome (DS) (n = 192)	Mutation-carrier (MC) (n=265)	p-value
Age, years (mean (SD))	41.5 (10.6)	41.9 (9.1)	40.4 (9.7)	0.222
Female	123 (61%)	84 (44%)*	140 (53%)	0.003
Non-Hispanic white	176 (87%)	176 (92%)†	206 (78%)	<0.001
APOE e4-positive	57 (28%)	38 (20%)	78 (29%)	0.059
Cognitive status Asymptomatic Symptomatic No consensus	202 (100%) 0 NA	155 (81%)*† 28 (15%) 9 (4%)	164 (62%)* 101 (38%) NA	< 0.001
Down syndrome type Full trisomy 21 Translocation Mosaicism		168 (87·5%) 12 (6%) 6 (3%)		
ADAD mutation type PSEN1 PSEN2 APP		-	202 (76%) 22 (8%) 41 (15%)	

Table 1. Participant demographics

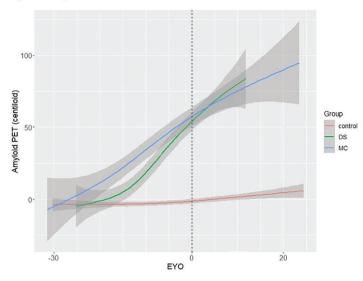

*Significantly different from controls after Benjamini-Hochberg correction for multiple comparisons (p < 0.05) †Significantly different from mutation-carriers after Benjamini-Hochberg correction for multiple comparisons (p < 0.05)

Figure 2. Amyloid PET by cognitive status

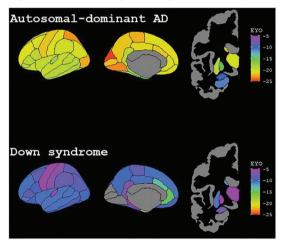
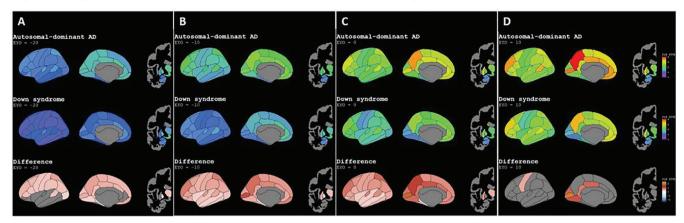
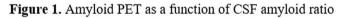

Amyloid deposition in Centiloids compared between control participants and DS and MC participants grouped by cognitive status. Pvalues calculated using the Wilcoxon test and adjusted for multiple comparisons using the Benjamini-Hochberg method. <u>Abbreviations</u>: aDS = asymptomatic DS; aMC = asymptomatic MC; sDS = symptomatic DS; sMC = symptomatic MC; DS = participants with Down syndrome; MC = autosomal-dominant mutation carriers; PET = positron emission tomography

Figure 3. Amyloid PET as a function of EYO

Amyloid deposition in Centiloids plotted as a function of participants' EYO using a generalized additive model and fitting a spline to EYO. <u>Abbreviations</u>: EYO = estimated years to symptom onset; DS = participants with Down syndrome; MC = autosomal-dominant mutation carriers; PET = positron emission tomography


Figure 4. EYO at which significant regional amyloid accumulation is measured


EYO at which regional amyloid accumulation in A) autosomal-dominant AD mutation-carriers and B) individuals with DS was significantly greater than controls using a 99% confidence interval to account for multiple comparisons. <u>Abbreviations</u>: AD = Alzheimer's disease; EYO = estimated years to symptom onset; DS = Down syndrome

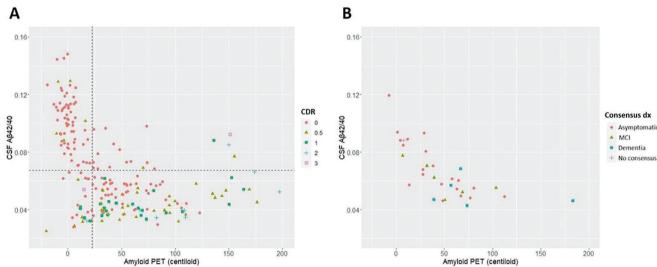

5 of 5

Figure 5. Regional PiB SUVR in autosomal-dominant AD versus Down syndrome

Regional PiB SUVRs at A) EYO = -20, B) EYO = -10, C) EYO = 0, and D) EYO = 10 in autosomal-dominant AD MCs, participants with DS, and the significant difference between MC and DS SUVRs using a 99% confidence interval to account for multiple comparisons. <u>Abbreviations</u>: AD = Alzheimer's disease; EYO = estimated years to symptom onset; DS = Down syndrome; MC = mutation-carrier; SUVR = standard uptake value ratio

Amyloid deposition in Centiloids plotted against the ratio of $A\beta_{42}/A\beta_{40}$ levels in the CSF. The dotted lines represent the previously defined amyloid-positivity cut-offs in DIAN for CSF (horizontal) and PET imaging (vertical) measures. <u>Abbreviations</u>: $A\beta$ = amyloid-beta; CDR = clinical dementia rating; CSF = cerebrospinal fluid; dx = diagnosis; MCI = mild cognitive impairment; PET = positron emission tomography