

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Single Cell Line

Generation of a human induced pluripotent stem cell line (INEUi001-A) from an amyotrophic lateral sclerosis/frontotemporal dementia patient with a C9ORF72 G4C2 genotype of <2 (GGGGCCG) and 10 repeats

Micaela Nievas^a, Leonardo Romorini^a, Luciana Isaja^a, Giulia S. Clas^b, Soledad Rodríguez-Varela^a, Sofía Mucci^a, Tatiana Itzcovich^b, Bruno de Ambrosi^c, María E. Scassa^a, Gustavo E. Sevlever^{a,b}, Ezequiel I. Surace^b, Mariela C. Marazita^{a,*}

^a Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN-INEU-Fleni-CONICET), Escobar, Provincia de Buenos Aires, Argentina

^c ALS Clinic. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni), Buenos Aires, Argentina

ABSTRACT

Human induced pluripotent stem cell (hiPSC) line INEUi001-A was reprogrammed from peripheral blood mononuclear cells (PBMC) using the lentiviral-hSTEMCCAloxP vector. PBMCs were obtained from a 75- year-old female ALS/FTD disease patient carrying a heterozygous deletion within the *C9ORF72* hexanucleotide repeat region resulting in a GGGGCCG sequence (~1.16 repeats). *C9ORF72* genotype was maintained and stemness and pluripotency confirmed in INEUi001-A hiPSC line.

(continued)

degeneration in ALS-FTD.

1. Resource table:

		Unique stem cell line identifier	INEUi001-A
Unique stem cell line identifier	INEUi001-A	Gene/locus	C90RF72/NG 031977.2(C90RF72):
Alternative name(s) of stem cell line	FBDC9 1.3		g.5328_5338del
Institution	Instituto de neurociencias, Fundación para la	Date archived/stock date	08/07/2022
	lucha contra las enfermedades neurológicas	Cell line repository/bank	https://hpscreg.eu/cell-line/INEUi001-A
	de la infancia. (INEU-Fleni – CONICET)	Ethical approval	The study was approved by local Ethics
Contact information of distributor	Mariela Marazita (mmarazita@fleni.org.ar)		Committee (Comité de ética en
Type of cell line	Induced pluripotent stem cell (iPSC)		investigaciones biomédicas del Instituto
Origin	Human		Fleni) (code number:3570). Written
Additional origin info requiredfor	Age:75Sex: female Ethnicity if known: white		informed consent was obtained from the
human ESC or iPSC	latino		patient.
Cell Source	Peripheral blood mononuclear cells		
	(PBMCs).		
Clonality	Clonal		
Method of reprogramming	Lentiviral EF1a-hSTEMCCA-loxP vector		
	expressing OCT-4, SOX-2, c-MYC and KLF-		
	4		
Genetic Modification	NO	2. Resource utility	
Type of Genetic Modification	N/A		
Evidence of the reprogramming transgene loss (including genomic	RT-/q-PCR.	The ALS/FTD -natient-deriv	ved iPSC line harbours a heterozygous
			exanucleotide repeat region resulting in a
copy if applicable)			1 0 0
Associated disease	Amyotrophic Lateral Sclerosis /		peats), in contrast to the most frequent 2-
	Frontotemporal dementia	repeat allele in the general popu	lation. The generated iPSC line can help
	(continued on next column)	to uncover physiopathological mechanisms that lead to neuro-	

* Corresponding author. E-mail address: mmarazita@fleni.org.ar (M.C. Marazita).

https://doi.org/10.1016/j.scr.2023.103076

Received 9 February 2023; Accepted 16 March 2023 Available online 21 March 2023 1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

^b Laboratory of Neurodegenerative Diseases – Institute of Neurosciences (INEU-Fleni- CONICET), Buenos Aires, Argentina

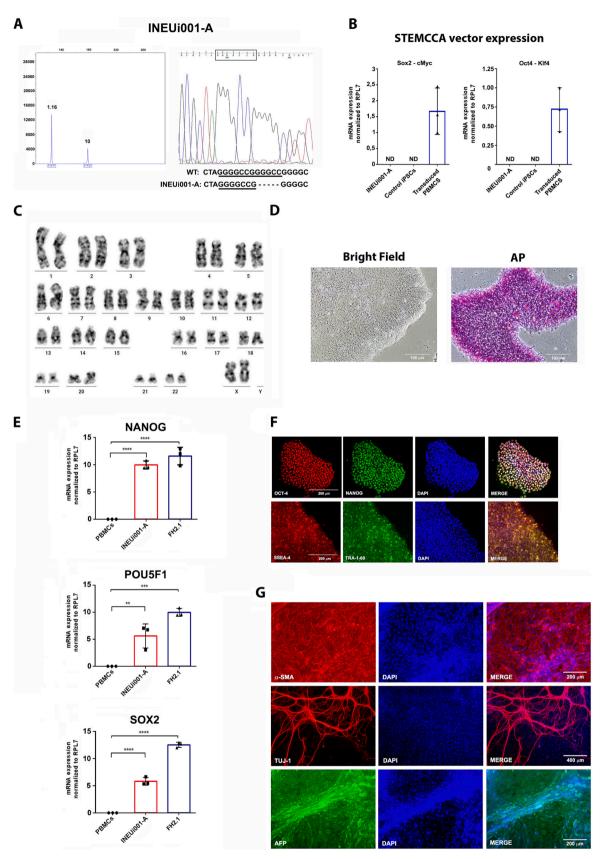


Fig. 1. Characterization of the INEUi001-A cell line with a C9ORF72 G4C2 genotype of <2 (GGGGCCG) and 10 repeats.

A) Amplified fragment length polymorphism (AFLP) for C9ORF72 hexanucleotide repeat genotyping and Sanger sequencing B) Quantitative PCR (qPCR) analysis of stemcca vector expression C) Karyotype of the INEUi001-A cell line by G-banded chromosome analysis D) Alkaline phosphatase staining E) Pluripotency markers analysis by qPCR (NANOG, POU5F1 and SOX2) F) Pluripotency markers verified by immunostaining (OCT-4, NANOG, SSEA-4 and TRA 1-60). G) Differentiation capacity into the three germ layers (Endoderm, AFP; Mesoderm, α -SMA; Ectoderm, TUJ-1)

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology Phenotype	Photomicrography Immunocytochemistry	Normal Positive for pluripotency markers OCT-4, NANOG, TRA1-	Fig. 1 panel D Fig. 1 panel F
	RT-qPCR	60, and SSEA-4. cells express OCT-4, SOX-2	Fig. 1 panel E
Genotype	Karyotype (G- banding) and	and NANOG 46,XX, resolution: 440	Fig. 1 panel C
Identity	resolution Microsatellite PCR (mPCR) OR	N/A	N/A
	STR analysis	24 sites tested, matched	Submitted in archive with journal
Mutation analysis (IF APPLICABLE)	Sequencing	Amplified fragment length polymorphism (AFLP) for C9ORF72 hexanucleotide repeat genotyping and Sanger sequencing – AFLP PCR resulted in two peaks: 125 bp and 178 bp (Fig. 1A, left). A new PCR reaction was run on a 12% polyacrylamide gel and the 125 bp band was excised, eluted and sequenced (Fig. 1A, right). A deletion was confirmed in this allele resulting in a GGGCCG sequence (~1.16 repeats)present in INEUi001-A	Fig. 1 panel A
Microbiology and virology	Southern Blot OR WGS Mycoplasma	N/A Mycoplasma testing by PCR (Negative) passage 16	N/A Supplementary file 1
Differentiation potential	Embryoid body formation	Expression of α-smooth muscle actin (SMA), α-feto protein (AFP) and NESTIN was used as a proof of three germ layers formation	Fig. 1 panel G
Donor screening (OPTIONAL)	HIV 1 $+$ 2 Hepatitis B, Hepatitis C	N/A	N/A
Genotype additional	Blood group genotyping	N/A	N/A
info (OPTIONAL)	HLA tissue typing	N/A	N/A

3. Resource details

Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTD), are part of a clinical-pathological continuum. ALS is

characterized by the progressive loss of motor neurons and weakness of voluntary muscles, while FTD is the second most prevalent form of early-onset dementia.

The expansion of the hexanucleótido G4C2 in the C9ORF72 gene accounts for almost 40% of familial ALS patients, 25% of familial FTD patients, and as high as 88% of familial ALS/FTD patients. The number of G4C2 repeats in healthy subjects ranges between 2 and 24, with most people harbouring two to eight repeats. Peripheral blood mononuclear cells were obtained from a blood sample of a 75-year-old female ALS/ FTD patient harbouring a heterozygous deletion within the C9ORF72 hexanucleotide repeat region resulting in a GGGGCCG sequence (~1.16 repeats), in contrast to the most frequent 2-repeat allele in the general population. The other allele corresponds to a 10-repeat G4C2 hexanucleotide. The EF1a-hSTEMCCA-loxP lentiviral vector expressing OCT-4, SOX-2, c-MYC and KLF4 pluripotency genes was used to generate the iPSC line INEUi001-A as described previously (Somers et al., 2010) using a feeder- and xeno-free reprogramming protocol. (Chen et al., 2011). The deletion within the G4C2 hexanucleotide is present in the INEUi001-A iPSC line as in the parental PBMCs (Fig. 1A, left panel: electropherogram; right panel: chromatogram). Short tandem repeat (STR) analysis confirmed that iPSCs profiles matched those of the donor PBMCs. Transgenes inserted by STEMCCA lentiviral vector silencing was confirmed by RT-qPCR using specific primers for exogenous expression (Fig. 1B and Table 2). iPSC-FH2.1 line and transduced PBMCs harvested on day 6 of reprogramming protocol were used as negative and positive control respectively (Fig. 1B). INEUi001-A iPSCs exhibit normal karyotype (46, XX) (30 metaphases were studied at a 440-band resolution) (Fig. 1C), show typical iPSCs morphological characteristics (formation of compact multicellular colonies with a high nucleus/cytoplasm ratio and distinct colony borders), and high Alkaline Phosphatase (AP) activity (Fig. 1D). Quantification of the mRNA expression levels of SOX-2, POU5F1 (OCT-4), and NANOG genes by RT-qPCR confirmed stemness, iPSC-FH2.1 line was used as positive control (Fig. 1E). Furthermore, immunofluorescence staining showed robust expression of stemnessassociated markers OCT-4, NANOG, SSEA-4 and TRA1-60 (Fig. 1F). Finally, in vitro spontaneous differentiation through embryoid bodiesbased method proved the pluripotent potential of INEUi001-A iPSC line to differentiate into the three germ layers as shown by immunofluorescence analysis of Smooth muscle actin (SMA, mesoderm), Alphafetoprotein (AFP, endoderm) and NESTIN (ectoderm) expression (Fig. 1G).

4. Materials and methods

4.1. Reprogramming and cell culture

PBMCs were isolated from blood using a Ficoll density gradient procedure (HISTOPAQUE®SIGMA, #10771). A total of 2.10⁶ cells were cultured in 2 mL erythrocytes expansion media containing StemProTM-34-SFM (Gibco™ #10639011), 50 µg/mL ascorbic acid, 50 ng/mL SCF, 10 ng/mL IL-3, 2U/mL EPO, 40 ng/mL IGF-1 and 1 µM Dexamethasone, in 1 well of a 12-well dish at 37 °C, 5% CO2. Media was replaced on days 3 and 6. On day 9, EF1a-hSTEMCCA-loxP lentiviral reprogramming vector was used to transduce cells at MOI = 7. Cells were plated on Geltrex-coated dishes (1%, Gibco™, #A1413202), and further culture according to TeSRTM-E7TM manufacturers instructions (STEMCELLtechnologiesTM, #05914). At day 30 post-transduction, iPSC colonies were mechanically isolated and expanded on Geltrex-coated dishes in mTeSR[™] Plus medium (STEMCELL-technologies[™], #17187501). Cell cultures were passage every 3 to 4 days using Versene (GIBCO, #15040066) at 1:8 ratio and adding 10 µM Y-27632 ROCK inhibitor (Cell-Signalling-Technology, #13624) for up to 24 h.

4.2. Genotyping and STR analysis

Genomic DNA was isolated using the Wizard-Genomic-DNA-

Table 2

Reagents details.

Antibodies used for immunocytochemistry/flow-cytometry

Antibodies used for immunocytochemistry/flow-cytometry						
	Antibody	Dilution	Company Cat # and RRID			
Pluripotency Markers	mouse anti-OCT-4 IgG	1:200	Santa Cruz Biotechnology Cat# sc-5279, RRID: AB_628051			
Pluripotency Markers	rabbit anti-NANOG IgG	1:400	Cell Signaling Technology Cat#4903, RRID: AB_10559205			
Pluripotency Markers	mouse anti-SSEA4 IgG	1:200	Santa Cruz Biotechnology Cat# sc-21704, RRID: AB_628289			
Pluripotency Markers	mouse anti-TRA1-60 IgM	1:200	Santa Cruz Biotechnology Cat# sc-21705, RRID: AB_628385			
Differentiation Markers	mouse anti-AFP IgG	1:200	Santa Cruz Biotechnology Cat# sc-166325, RRID: AB_2305278			
Differentiation Markers	mouse anti-SMA IgG	1:400	Invitrogen Cat# PA5-87638, RRID: AB_2804309			
Differentiation Markers	rabbit anti-Neuronal Class III β-tubulina (TUJ1) IgG	1:1000	Covance Antibody Products Cat# MMS-435P, RRID: AB 2313773			
			-			
Secondary antibodies	Goat anti-Mouse IgG Alexa Fluor 594	1:400	Thermo Fisher Scientific Cat# A-11005, RRID: AB_2534073			
Secondary antibodies	Goat anti-Mouse IgG Alexa Fluor 488	1:400	Thermo Fisher Scientific Cat# A-11001, RRID: AB_2534069			
Secondary antibodies	Goat anti-Mouse IgM Alexa Fluor 488	1:400	Thermo Fisher Scientific Cat# A-21042, RRID: AB_2535711			
Secondary antibodies	Goat anti-Rabbit IgG Alexa Fluor 594	1:400	Thermo Fisher Scientific Cat# A-11012, RRID: AB_2534079			
Secondary antibodies Primers	Goat anti-Rabbit IgG Alexa Fluor 488	1:400	Thermo Fisher Scientific Cat# A-11008, RRID: AB_143165			
	Target	Amplicon size	Forward/Reverse primer (5'-3')			
Exogenous factors (RT-	STEMCCA plasmid OCT-4/KLF4	561 bp	CAACGAGAGGATTTTGAGGC/			
PCR)	•	*	ATCGTTGAACTCCTCGGTCTCTCT			
Exogenous factors (RT-	STEMCCA plasmid SOX-2/c-MYC	550 bp				
PCR)	-	-	TTGGCTCCATGGGTTCGGTG/			
			AAGGGTGTGACCGCAACGTAGG			
Pluripotency Markers	POU5F1 (OCT-4)	105 bp	GCAGGCCCGAAAGAGAAAGCGA/			
(qPCR)			TGGCTGATCTGCTGCAGTGTGG			
Pluripotency Markers	SOX-2	110 bp	AGCATGGAGAAAACCCGGTACGC/			
(qPCR)	50112	110 bp	CGTGAGTGTGGATGGGATTGGTGT			
(4. 6.0)						
Pluripotency Markers	NANOG	120 bp	TCCTTCCTCTCCCCCTCCCAT/			
(qPCR)		<u>F</u>	TAGGCTCCAACCATACTCCACCCTC			
· • ·						
House-Keeping Genes	RPL7	138 bp	AATGGCGAGGATGGCAAG/TGACGAAGGCGAAGAAGC			
(qPCR)						
AFLP PCR-Forward	C9ORF72	Information in Table 1, Mutation	CAAGGAGGGAAACAACCGCAGCC			
Sequencing		analysis section.				
AFLP PCR-Reverse	C90RF72	Information in Table 1, Mutation analysis section.	GCAGGCACCGCAACCGCAG			

Purification-kit (Promega, # A1120). The G4C2 repeat was genotyped from iPSCs (passage 15) as previously described (Itzcovich et al., 2016). STR analysis from PBMC (passage 1) and iPSC (passage 11) was performed at Laboratorio de Huellas Digitales Genéticas (FFyB-UBA).

4.3. Karyotyping

G-banded chromosome analysis of 30 metaphases from iPSCs (passage 12) was performed by Kromos Laboratory.

4.4. Alkaline phosphatase assay

iPSCs were subjected to alkaline phosphatase staining following manufacturer's instructions (Sigma, #86R).

4.5. RNA isolation and RT-qPCR

RNA was extracted with TRIzol (ThermoFisher-Scientific, #15596026) and cDNA was synthesized from total RNA with Oligo(dT) primers and M–MLV Reverse Transcriptase (Promega, #M170B) following manufacturers instructions. qPCR amplification (95 °C/15 s, 60 °C/1 min, 40 cycles) and analysis were performed with StepOnePlus-Real-Time-PCR-System (PE-Applied-Biosystems). The FastStart-Universal-SYBR-Green-Master Mix(ROX) (Roche, #04913850001) was used for all reactions. Transgenes expression was assessed using primers that bridge over two of the four transgenes on the STEMCCA lentiviral vector sequence. This design allows amplification of only cDNA generated from the exogenous mRNA expression of these genes. Cells were analysed at passages 12/14/16. Values were normalized to a house-keeping (RPL7) gene.

4.6. In vitro differentiation

iPSCs (passage 12) were detached with Dispase (GibcoTM, #17105041) and transferred to non-adherent Petri dishes in DMEM/ F12 + 1x GlutaMAX (Gibco, #35050061), 20% knock-out serum replacement (GibcoTM, #10828), 1x non-essential amino acids (Sigma, #M7145), 0.1 μ M 2-mecaptoethanol and 100U/ml penicillin and 50 μ g/ml streptomycin to induce formation of embryoid bodies (EBs). On day 4, EBs were plated onto 0.1% gelatin coated 24-well plates and cultured for additional 17 days in DMEM/F12 supplemented with 20% FBS (Gibco, #10270106), 1x GlutaMAX, 100U/ml penicillin and 50 μ g/ml streptomycin.

4.7. Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde (30 min) and permeabilized with 0.1% Triton X-100f (30 min). Primary antibody incubation was performed overnight (4 °C) in PBS/BSA-1%. Fluorescent-dye conjugated secondary antibodies were incubated in PBS/BSA-1% (1 h, room temperature). Cells were counterstained with DAPI and examined under a NIKON-Eclipse-TE2000-S inverted microscope. Pluripotent markers were analysed at passage 9.

4.8. Statistical analysis

Results are expressed as mean \pm SEM (n = 3). Comparisons were analysed by One-Way ANOVA followed by Dunnetts-test (**p < 0.01; ****p < 0.0001).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by research grants from Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) and from CONICET (PIP0270).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2023.103076.

References

- Chen, G., Gulbranson, D.R., Hou, Z., Bolin, J.M., Ruotti, V., Probasco, M.D., Smuga-Otto, K., Howden, S.E., Diol, N.R., Propson, N.E., Wagner, R., Lee, G.O., Antosiewicz-Bourget, J., Teng, J.M.C., Thomson, J.A., 2011. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8 (5), 424–429.
- Tatiana Itzcovich, Zhengrui Xi, Horacio Martinetto, Patricio Chrem-Méndez, María Julieta Russo, Bruno de Ambrosi, Osvaldo D. Uchitel, Martín Nogués, Emanuel Silva, Galeno Rojas, Pablo Bagnatti, Alejandra Amengual, Jorge Campos, Ekaterina Rogaeva, Peter St. George-Hyslop, Ricardo Allegri, Gustavo Sevlever, Ezequiel I. Surace. Analysis of *C9orf72* in patients with frontotemporal dementia and amyotrophic lateral sclerosis from Argentina. Neurobiol. Aging 40 (2016) 192. e13e192.e15.
- Somers, A., Jean, J.C., Sommer, C.A., Omari, A., Ford, C.C., Mills, J.A., Ying, L., Sommer, A.G., Jean, J.M., Smith, B.W., Lafyatis, R., Demierre, M.F., Weiss, D.J., French, D.L., Gadue, P., Murphy, G.J., Mostoslavsky, G., Kotton, D.N., 2010. Generation of transgene-free lung disease-specific human iPS cells using a single excisable lentiviral stem cell cassette. Stem Cells 28 (10), 1728–1740.