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SUMMARY
Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recog-

nitionwith high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNNwith transmitted light

microscopy images to distinguish pluripotent stem cells from early differentiating cells. We induced differentiation of mouse embryonic

stem cells to epiblast-like cells and took images at several time points from the initial stimulus.We found that the networks can be trained

to recognize undifferentiated cells from differentiating cells with an accuracy higher than 99%. Successful prediction started just 20 min

after the onset of differentiation. Furthermore, CNNs displayed great performance in several similar pluripotent stem cell (PSC) settings,

including mesoderm differentiation in human induced PSCs. Accurate cellular morphology recognition in a simple microscopic set up

may have a significant impact on how cell assays are performed in the near future.
INTRODUCTION

Major advances in artificial intelligence have occurred in

recent years. New hardware with significantly increased

calculus capacity and new software for easier application

of complex algorithms allow now to apply powerful pre-

dictions in many fields. Neural networks have particularly

benefited from this progress. With proper design, these al-

gorithms are highly efficient for machine learning classifi-

cation tasks. The term deep learning (DL) has been coined

for these neural networks with extremely high amount of

calculations (LeCun et al., 2015). DL has proved to be

particularly useful in computer vision, where it allows

image recognition by learning visual patterns through

the use of the so-called convolutional neural networks

(CNNs) (Camacho et al., 2018; Cao et al., 2018; Voulodi-

mos et al., 2018). Roughly, a CNN processes all numbers

composing a digital image and identifies the relationship

between them. These relations are different according to

the different objects found in the image, and in particular

at the edges of these objects. The process of finding the

optimal weights that makes these predictions is a key

step in CNN training. This task is performed through

the application of very large amounts of weighted regres-

sions, which can take very high computational require-

ments, a long time, and a significant number of images.

However, once trained, applying the neural network

training to get predictions is relatively fast and allows

almost instant image recognition and classification. For
Stem C
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example, powerful CNN training now allows tasks as

diverse as autonomous car driving and face recognition

in live images.

The expansion of CNNs to biomedicine and cell biology

is foreseen in the near future (Camacho et al., 2018).

Several recent reports highlight the possible application

of DL in cell and molecular biology (Ching et al., 2018).

Fluorescent staining prediction (Christiansen et al.,

2018), bacterial resistance (Yu et al., 2018), or super-resolu-

tion microscopy improvement (Ouyang et al., 2018) are

some of the successful applications that have been

described. Based on what has been developed so far using

deep learning, the experimental assays where visual

pattern recognition is necessary may soon be substantially

transformed.

One of the areas that could benefit from the advances

in DL is the field of mammalian pluripotent stem cells

(PSCs). These cells have the remarkable capability to

differentiate to all the cell types of the organism, which

has made them gain a lot of attention in areas such as

regenerative medicine, disease modeling, drug testing

and embryonic development research. There are two

main types of PSCs: (1) embryonic stem cells (ESCs),

which are derived from the inner cell mass of peri-

implantation blastocysts, and (2) induced PSCs (iPSCs),

which are similar to ESCs, but originate through cell

reprogramming of adult terminally differentiated cells

by overexpressing core pluripotency transcription fac-

tors. PSC differentiation is a highly dynamic process
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in which epigenetic, transcriptional, and metabolic

changes eventually lead to new cell identities. These

changes occur within hours to days, and even months,

and are generally identified by measuring gene expres-

sion changes and protein markers. These assays are

time consuming and expensive, and normally require

cell fixation or lysis, thus limiting their uses as quality-

control evaluations necessary for direct application of

these cells to the clinic. In addition to these molecular

changes, PSC differentiation is followed by an important

morphological transformation, in which the highly

compact PSCs colonies give rise to more loosely orga-

nized cell structures. Although these morphological

changes can be quite evident to the trained human

eye, they are inherently subjective and thus are not

used as a standard and quantitative measurement of

cell differentiation.

In this paper we test the hypothesis that CNNs are able

to accurately predict the early onset of PSC differentiation

in plain images obtained from transmitted light micro-

scopy. For this purpose, we used a model in which mouse

ESCs (mESCs) maintained in the ground state of pluripo-

tency were differentiated to epiblast-like cells (EpiLCs),

which are in the formative state of pluripotency (Hayashi

et al., 2011; Smith, 2017). This experimental system,

which recapitulates early events that occur during embry-

onic development, is very efficient and it is completed in

only 24–48 h. By applying CNN training at different times

from the onset of differentiation, we show that the

trained CNN can identify differentiating cells only mi-

nutes after the differentiation stimuli. We show that

CNNs can also be trained to distinguish mESCs in the

ground state of pluripotency from mESCs maintained in

serum and leukemia inhibitory factor (LIF) (fetal bovine

serum [FBS] + LIF), a culture condition routinely used

to maintain mESCs in the naive undifferentiated state

but that displays higher cell heterogeneity and increased

expression of differentiation markers. Furthermore,

CNNs were also able to accurately classify undifferentiated

human iPSCs (hiPSCs) from early differentiating meso-

dermal cells. We believe that accurate cellular morphology

recognition in a simple microscopic set up may have a sig-

nificant impact on how cell assays are performed in the

near future.
Figure 1. Convolutional Neural Network Training
Images were taken from pluripotent and differentiating 46C mESCs and
acquire a spindle shape as time progresses. Scale bars, 100 mm. Early
center column, each panel presents the training and validation accurac
of differentiation shortens, the training becomes less confident. Alth
does not reach a value close to 1. No training is obtained at time zero
testing the CNN on 100 independent images. Accuracy is at the top a
RESULTS

Initial Training

Early after the onset of differentiation, mESCs rapidly

changed their morphology. By 24 h, they acquired a sub-

stantial volume of cytoplasm, some cells detached from

each other, and colonies spread with a spindle shape

form (Figure 1). We initially took images at 0, 2, 6, 12,

and 24 h and trained a CNN based on the ResNet50 archi-

tecture (He et al., 2015), a well-known CNN architecture

with proved efficacy. Approximately 800 images per group

were provided to the network for each condition, plus

200 per group for testing during training, and 50 images

per group for final, independent validation. Approximately

800 images were provided to the network for each condi-

tion. As expected, at 0 h (images taken immediately before

differentiation onset) the training accuracywas compatible

with a random state of prediction between the two states,

although some training is seen as the epoch cycles learns

from itself. Thereafter, the trained network was able to pre-

dict with high level of accuracy in both training and valida-

tion samples. Independent test accuracy was 1 at 6, 12, and

24 h, and 0.97 at 2 h after the onset of differentiation.

After getting this encouraging level of accuracy, we

collected more measurements to improve the network’s

performance and took a new set of images at 1 and 2 h

of differentiation. Also, we had previously observed that,

with the initial cell density (30 3 10 cells/cm), there

were many image slices with very few cell colonies, and

hence we hypothesized the CNN may not extract enough

features for proper training, in particular at early time

points. Therefore, we increased the initial cell seeding

number up to 60 3 10 cells/cm. We also increased the

number of images feeding to the CNN to approximately

1,000 per group (250 images before slicing). We also as-

sessed variants in the architecture of the CNN. We tried

different numbers of hidden layers in ResNet (34 and

101), and with another deep neural network with

different architecture (DenseNet [Huang et al., 2016]; for

a comprehensive review about networks consult [Zahan-

gir Alom et al., 2018]). Finally, we compared different ap-

proaches to preprocess images in order to increase the

model performance, a process known as image augmenta-

tion. Figure 2 shows the results at 1 h after the onset of
fed into a ResNet50. On the left panels it can be seen how colonies
changes are present at 2 h after the onset of differentiation. In the
y, as well as the training and validation loss. As time from the onset
ough an acceptable training is reached at 2 h, validation accuracy
. On the right columns, confusion matrix graph shows the results of
t 6, 12, and 24 h, falling to 0.97 at 2 h.
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Figure 2. Training and Validation Accuracy and Training and Validation Loss At 1 h of Differentiation
Several CNNs were used to train images at 1 h. All networks achieved results close to 100% of accuracy. Insets in all panels shows details of
the stable phase. DenseNet architectures showed validation accuracies with a steeper curve, although reaching similar values than ResNet,
in particular when simple image augmentation was used. Validation loss was slightly lower when training was done with DenseNet
architectures. VGG16, a shallower architecture, could not be trained. All models were run with the same initial weights. NA, no image
augmentation; SA, simple image augmentation; CA, complex image augmentation.
differentiation. We achieved a very high training accuracy

with all trained networks (Table S1). We noticed that

increasing image preprocessing did not necessarily

increased accuracy. Also, increasing the depth of the

network or its complexity may not improve results. In

our stem cell model, best performance was achieved

with ResNet50 with none or simple image augmentation

(ResNet-SA) and with DenseNet with simple augmenta-

tion (DenseNet-SA). Of note, DenseNet with simple and

without augmentation got the lowest validation loss, a

measure of training performance. We then used the suc-

cessful networks ResNet50-SA and DenseNet-SA to train
848 Stem Cell Reports j Vol. 12 j 845–859 j April 9, 2019
images taken at 2 h from the onset of differentiation,

and accuracy was again at 100% (Figure S1). Importantly,

we found similar results when using a different mESC cell

line, the E14-derived Ainv15 cells. At 1 h, training reached

approximately 85% accuracy, peaking to more than 99%

after 8 h of differentiation to EpiLCs (Figure S2). The

slight difference in accuracy at 1 h with respect to the

46C mESCs might be due to the fact that Ainv15 cells

grow more loosely attached to the plate, forming tridi-

mensional colonies that thus take longer to change in

morphology even when visually inspected. These results

further validate the applicability of CNN classification



on early-differentiating mESCs, and also highlight that

variability between different cell lines can be efficiently

quantified.

All tested CNNs are very deep in terms of number of

layers, with a significant number of hidden layers and a

huge calculation burden. To test if other architecture with

less layers was able to train to a similar extent, we ran the

same analysis with VGG16 (Simonyan and Zisserman,

2014), a shallower network, adding simple image augmen-

tation. However, the training of this neural network was

unsuccessful with our image set as it reached the futile

training function (Figure 2). Eventually, if left running,

VGG16 may train the images, but it would take much

longer time and resources.

Optimizers

Learning rate (LR) is critical for training neural networks.

LR adjusts, at every training cycle (called epoch), the rate

at which the network weights will be modified in order to

find the minimum and best loss. Several algorithms (usu-

ally known as optimizers) that adjust LR decaying according

to training have been developed. In all previous analyses

we used the Adam algorithm, but several others have

been proposed (Ruder, 2016). We compared them in a

limited training of 40 epochs using ResNet50. We found

that Adam, Adamax, and Adagrad were equally good, as

opposed to Nadam and RMSprop, which both trained at a

lower speed (Figure S3A). We were unable to train the neu-

ral network using stochastic gradient descent, although we

cannot rule out that, with proper adjustment, this algo-

rithm would eventually train the image set. Figure S3B

shows how LR adjusts itself as epochs progress to the end

of training. By the end of training, LR is a small fraction

of the initial one, and then allows finding of the minimal

loss. Several options can then be used to find the proper

LR to train the model.

Minimal Number of Images Required

DL neural networks require a significant amount of infor-

mation to identity features, and thus many images are usu-

ally needed. How many images are indeed needed for

optimal training is usually unknown and hard to predict,

and may significantly change between experiments de-

pending on the sort of images. For our 1-h training of

mESCs, we used 2,120 images (920 images in the 2i + LIF

group and 1,120 in the differentiation group).We then suc-

cessively trained ResNet50-SA with less images (100 less

per group in each retrain) to identify a minimal number

needed to train. The results show that, as the number of

images decreased, all parameters of training efficiency

also decreased (Figure S4). Underfitting, represented by a

much lower validation accuracy than training accuracy,

was observedwhen 1,400 images or less are used. A progres-
sive improvement is seen as images are increased up to the

full number available. Validation accuracy and loss reach

the highest level with the full set of images. Of note, inde-

pendent test on these analyses showed accuracy values

over 0.9 in all trainings, except those with very low image

numbers (200 and 400, data not shown). These analyses

suggest that careful decision should be made when

choosing the number of images needed, as a lower number

can produce acceptable results, but still underfitted and not

according the training possibilities.

CNN Image Representation

Training a neural network involves a huge amount of calcu-

lations in a series of so-called ‘‘hidden’’ layers. The interme-

diate calculation values in the hidden layers can be ob-

tained and used to build up intermediate images. It is

possible then to plot what the CNN is actually doing by

translating the activation layers into pixels, and, hence,

to get an insight on how the CNN does see an image and

how it performs its classification task. ResNet50-SA has a

total of 168 layers, with 49 of them containing activations

(that is, representation of the pixels) (Data S1). Figure 3

shows the representation of the activations in some of

the hidden layers of images trained with ResNet50-SA. At

the top of the panel both original images from 2i + LIF

and differentiating cells are seen. The dimensions on these

original images are as given to the CNN: 480 rows by 640

columns by 3 layers (480, 640, 3). The last dimension cor-

responds to the red, green, and blue (RGB) channels. Of

note, we fed the CNN with images in greyscale, although

with the three-color layers. When CNNs were trained in

greyscale (240 3 320 3 1), no differences in accuracy or

loss were seen. This original size is immediately reduced

to 240 3 320 at the entry of the neural network. As the

CNN deepens, the activation layers are progressively

smaller in the first two dimensions and bigger in the last

one. By the end of the network, the final activation layer

has a small size (8 3 10) but high depth (2,048 channels).

This last activation’s layer’s weights are fed to a binary sig-

moid function for prediction. Hence, 80 pixels in 2,048

channels by 256 possible values gives almost 42 3 10

possible pixel variations for each image. The repetitive rela-

tion of these values in all images fed to the CNN provides

the patterns used for image identification.

DenseNet has a different architecture, with 140 total

layers and 39 activation layers (Data S2). An example of

some activation layers in DenseNet are shown in Figure S5.

In this network, the final layers are bigger with lower depth

(dimensions 60, 80, 12). Depth expands and then contracts

in DenseNet, as opposed to ResNet50. Representation of

2i + LIF cells and differentiating cells show that activations

changewith different cellmorphologies; in 2i + LIF they are

rounder than differentiating cells.
Stem Cell Reports j Vol. 12 j 845–859 j April 9, 2019 849



Figure 3. CNN Image Representation
The process of CNN learning involves reducing the size of the image and at the same time increasing depth. From a dimension in the
original layer (display on top) of 480 rows, 640 columns, and 3 layers (480, 640, and 3), the networks progressively go down to a final layer
of 8 3 10 3 2,048. The figure represents this process for one image of each group (2i + LIF and 1 h after onset of differentiation). Only
three figures of some of the activations layers are shown. Color bar scales the image activations from 0 to 255. The learning process ends up
by providing the last 2,048 figure weights of each image to a loglinear regression, which evaluates the two possible outcomes (2i + LIF
versus differentiation), and hence a probability is given. Convolutions are known to particularly recognize borders of objects, and this is
observed in the intermediate layers, where cell colonies are defined by their shape. These borders are then translated into specific patterns
in the final layer. In the last row it can be observed patterns of activations that are different in 2i + LIF and differentiated 2i + LIF. The
repetition of these activation patterns allows image classification. Scale bars, 100 mm.
Biological Changes during the First Hours of

Differentiation

Given the high accuracy of predictions made in such a

short time after the onset of differentiation, we next
850 Stem Cell Reports j Vol. 12 j 845–859 j April 9, 2019
decided to evaluate what biological changes could be de-

tected in these early time points.

The activation of the MEK/ERK signaling pathway is one

of the key events that leads to mESC differentiation
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(Nichols et al., 2009). Thus, we analyzed whether this

pathway was already activated after 1 h of differentiation

by assessing the levels of phospho-ERK. Interestingly,

most of the early-differentiating cells already displayed an

increased level of nuclear and cytoplasmatic phospho-

ERK. On the contrary, for mESCs in 2i + LIF, only cells in

theMphase of the cell cycle showed a phospho-ERK signal,

as reported previously (Shapiro et al., 1998) (Figures 4A and

S6). These results corroborate that differentiation signals

are rapidly transduced into cells.

We next wondered whether the activation of the differ-

entiation signals led to the modification of the transcrip-

tional profile of the cells at this short time. We assessed

the expression of several naive and primed pluripotency

markers at 1, 2, 24, and 48 h of differentiation. As expected,

the naive pluripotency markers Klf4, Nanog, Esrrb, and

Tbx3 were significantly downregulated at 24 and 48 h,

while the primed markers FGF5, Oct6, Dnmt3A, and Otx2

were upregulated (Figure 4B). Interestingly, we found that

during the first 2 h of differentiation there were minor

but significant changes in the expression of the naive

markers Klf4 and Nanog, as well as in the differentiation

markerOct6. Consistent with our results, KLF4 has recently

been shown to be phosphorylated by phospho-ERK, which

induces its exit from the nucleus affecting its own tran-

scription very early in the differentiation process (Dhaliwal

et al., 2018). The behavior of Oct6 is also supported by our

previous work, where we showed that Oct6 is rapidly

induced during exit from ground state pluripotency in

another mESCs cell line (Waisman et al., 2017). The slight

but consistent transitory upregulation of Nanog during the

first hour is intriguing, and we believe this might be a

consequence of a re-organization of regulatory elements

in its promoter region, although further research needs to

be done. Overall, these results indicate that within this

short frame of time mESCs begin to modify their transcrip-

tional profile.

It is thus evident that there are several molecular signa-

tures already present at 1 h from the onset of the differen-
Figure 4. Gene Expression, Cell Signaling, and Morphological Diff
(A) Representative immunostainings comparing mESCs cultured in 2i +
evaluated for ERK1/2 phosphorylation and for the re-organization of
Scale bars, 50 um.
(B) qRT-PCR analysis of primed and naive pluripotency markers in 2
presented displaying the log2 transformed values of the three indepe
show the high reproducibility of the results. Letters indicate significan
ANOVA.
(C) Morphological analysis of cell colonies grown in 2i + LIF or after 1 h
wide-field images (see Experimental Procedures) and morphological
sentative colony segmentations for 2i + LIF and 1 h EpiLCs Diff. Scale
indicated morphological variables comparing 2i + LIF and 1 h EpiLC D
were evaluated using the Kolmogorov-Smirnov and the Mann-Whitne
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tiation stimuli. However, due to the nature of the images

used to train the CNN, the morphological transformation

of cell colonies is the only parameter that the neural

network can detect and use as input for making predic-

tions. As we have previously mentioned, it has been

described that CNNs specifically recognize shape borders

of the object in the images (Krizhevsky et al., 2017). To

further study these changes at the molecular level, we

analyzed the organization of the actin cytoskeleton by

staining cells with phalloidin. Interestingly, fluorescent im-

ages clearly show that differentiating cells rapidly re-orga-

nize the distribution of the actin filaments, withmany cells

displaying minor spindles protruding from their surface

(Figure 4A).

To get more insight into the morphological differences

between the two conditions under study, we finally

analyzed the morphological properties of hundreds of col-

onies in the undifferentiated state or subjected to 1 h of dif-

ferentiation. We focused on parameters such as colony

area, perimeter, circularity, and solidity, the latter being a

measurement of how ‘‘ruffled’’ the border of the object is.

Compatible with our visual inspection of the images, we

quantitatively show that differentiating colonies were less

circular, with more ruffled borders and increased perimeter

size (Figure 4C). A small non-significant increase in colony

area was also observed. We thus believe that these features,

along with others that may also take into account the pixel

intensities within the colonies, may be important for the

CNN to be able to display such high predictive power. Of

note, all these morphological changes are relatively small,

as shown in the density plots of Figure 4C.

Independent Validation

We then analyzed the performance of the networks in inde-

pendent biological samples. Once trained, a CNN can be

easily used for prediction and run on a simple central pro-

cessing unit (CPU), without the computational require-

ments of a graphic processor unit (GPU). We indepen-

dently tested two of the successful networks (Resnet50-SA
erences of Early Differentiating EpiLCs
LIF and after 1 h of induction to EpiLCs (1 h EpiLC Diff). Cells were

the actin cytoskeleton (phalloidin). Nuclei were stained with DAPI.

i + LIF or after 1, 2, 24, and 48 h of EpiLC induction. Results are
ndent biological replicates relative to time 0 h (2i + LIF), to clearly
t differences between groups (p < 0.05) by randomized block design

induction to EpiLCs. Colonies were automatically detected from 20
properties were recorded and analyzed. Left images display repre-
bars, 100 mm. Right charts display the distribution density for the
iff (n = 326 and 291 colonies, respectively). Statistical differences
y U test. *p values < 0.05 were considered statistically significant.



and DenseNet-SA) in three more mESC differentiation ex-

periments, completely unrelated from the previous ones.

In 1,116 images, CNN were highly accurate (Figure 5A).

Overall, ResNet50-SA wrongly identified 4 images of 560

as differentiating, when in fact they were in the 2i + LIF

group, and one image as pluripotent when in fact it was

differentiating. When DenseNet-SA was used, the misiden-

tification was only 2 of 560 in the 2i + LIF group. These in-

dependent results confirmed the high accuracy (0.996 for

ResNet50-SA and 0.998 for DenseNet-SA) that bothmodels

reached in identifyingmorphological cell changes at a very

early stage of differentiation. Table 1 shows the classifica-

tion report of the prediction of the three replicates. All in-

dependent tests showed high precision and recall, with

no significant differences between models.

When the CNN classifies each image it outputs two prob-

abilities: one for cells in 2i + LIF, and the other for differen-

tiating EpiLCs. Both probabilities sum up to 1, and the call

will be for the higher one. To get an insight of the individ-

ual probabilities within all the images in the training exper-

iment, we plotted individual probabilities for both net-

works (Figure 5B). Both CNNs can easily identify

differentiating cells, with a very high probability for each

image. All of them, except for a few, are extremely close

to 1. However, probabilities for identifying 2i + LIF cells

were less high in both CNNs. We think that this is because

CNN performs image recognition by identifying object

borders. The morphological changes of differentiating

cells, with protrusions and spindles, may offer an advan-

tage in this case. Finally, the 2i + LIF prediction was signif-

icantly more precise with ResNet50-SA, based on higher

individual probabilities assigned for each image (mean

probability values for the 2i + LIF groups: ResNet50-SA,

0.989 ± 0.078; DenseNet-SA, 0.976 ± 0.055; p < 0.001 by

Wilcoxon test). A possible inference from these results is

that ResNet50-SA is able to extract more features than

DenseNet-SA.

We thenwondered if the neural networkwould be able to

correctly classify differentiation at earlier time points. We

calculated the classification accuracy on images taken

every 10min from the onset of differentiation, but without

re-training the network, i.e., using the 1-h training. We

found that the accuracy in these earlier points was still

high, reaching a value higher than 0.8 at 20 min. As ex-

pected, at earlier time points the CNN tended to classify

differentiating cells as being in the 2i + LIF category

possibly because colonies did not yet acquire morpholog-

ical differences. For this reason, the recall of the classifica-

tion for differentiating images and the precision of classifi-

cation of 2i + LIF images, respectively, increased with time

(Figure 4C, see Figure S7). Video S1 shows the progressive

flattening and morphological changes in the cell colonies.

These changes are observed as soon as 10 to 20 min from
the differentiation stimulus. Of note, we cannot rule out

that accuracy would be higher if prediction were based

on a neural network trained at earlier time points.
CNN Training on Different PSC Experimental Setups

We previously showed that CNNs can be efficiently trained

to identify early stages of mESCs differentiation toward

EpiLCs. We next decided to explore the applicability of

DL into the analysis of morphological differences of PSCs

in other experimental setups.

First, we assessed whether it was possible to train a CNN

to classify mESCs cultured in different conditions. As we

previously mentioned, mESCs can be maintained in the

ground state of pluripotency when cultured in defined me-

dia in the presence of LIF and inhibitors of the MEK/Erk

and GSK3 differentiation pathways (2i + LIF) (Ying et al.,

2008). Up until the development of these defined condi-

tions, mESCs were routinely cultured in FBS-containing

medium in the presence of LIF alone (FBS + LIF), where

they remain in a naive pluripotent state but display high

population heterogeneity and increased expression of dif-

ferentiation markers, among other differences (Guo et al.,

2016). Interestingly, mESCs in these two naive supporting

conditions also displaymorphological differences.We thus

assessed if it was possible to train a CNN to identify the cul-

ture condition, and found that the trained CNN reached a

very high level of accuracy in predicting which medium

was used (Figures 6A–6C).

Finally, we decided to analyze whether a CNN was

capable of identifying a completely different type of PSCs

and an associated differentiated cell type. As we previously

mentioned, terminally differentiated cells can be reprog-

rammed into an iPSC, which holds great promise in the

field of regenerative medicine.We thus decided to differen-

tiate a previously obtained hiPSC line derived in our lab to

an early mesodermal progenitor (Questa et al., 2016).

To this end, we cultured the hiPSCs in the presence of

Activin A, BMP4, and vascular endothelial growth factor

(VEGF) for 24 h (Evseenko et al., 2010), and trained a

CNN to classify undifferentiated and early mesodermal

progenitors. Again, training images using Resnet50 re-

sulted in a very high level of accuracy of classification of in-

dependent images (Figures 6D–6F). All these data confirm

the high capability of CNNs to identify minor, early

changes in stem cell differentiation irrespective of the pro-

tocol or cell used.
DISCUSSION

In this paper we show that current deep CNNs can be

trained with a relatively large series of images taken in a

simple transmitted light microscope and then correctly
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Figure 5. CNN Independent Test
(A) Three independent differentiation assays were ran and images were taken as described previously. A total of 1,116 images were
analyzed with both ResNet50-SA and DenseNet-SA. Confusion matrices show that both neural networks predicted with high accuracy the
differentiating group.
(B) Probability plots. For each image, the neural network generates a probability for both 2i + LIF and differentiating groups. Both
probabilities sum up to 1. The prediction will be based on the highest probability. Hence, all predictions are above the red horizontal lines.
On the left panel, true differentiating images are represented. Except for one image in ResNet50-SA, all predictions were correct. Moreover,
probabilities were very high in almost all cases. Predictions were also very high on the right panel (2i + LIF), although more variability is
observed, particularly with DenseNet.
(C) Evaluation of classification accuracy during the first hour of differentiation. Differentiation was performed as previously indicated, and
images were taken every 10 min during the first hour of differentiation and compared with the same number of images in the 2i + LIF
condition. Images were classified according to the previously obtained ResNet50-SA training for 1 h of differentiation. Left side, confusion
matrices for each time point. Right side, classification accuracy. Of note, by 20–30 min most of the differentiation images are correctly
classified.
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Table 1. CNN Performances on Independent Replicates

CNN Group Precision Recall F1 Score

2*ResNet50-SA differentiating 0.9938 ± 0.0061 0.9979 ± 0.0037 0.9958 ± 0.0018

pluripotent stem cell 0.9979 ± 0.0036 0.9938 ± 0.0063 0.9958 ± 0.0018

2*DenseNet-SA differentiating 0.9965 ± 0.0032 1.000 ± 0.0000 0.9982 ± 0.0016

pluripotent stem cell 1.000 ± 0.0000 0.9965 ± 0.0032 0.9983 ± 0.0016
classify images withminor morphological changes in inde-

pendent, new samples. Close to 100% accuracy was

reached in most cases. The neural networks demonstrated

to be very sensitive to the morphological changes: in a

model of mouse PSCs, only 20 to 40 min after the onset

of differentiation the CNN demonstrated detection of

morphological changes in most of the images. We also

demonstrated its efficacy in several settings of pluripotent

stem cell culture, including EpiLC differentiation in other

mouse PSCs and in early mesoderm differentiation of

hiPSCs. Time-lapse imaging shows that these changes are

readily observed by the human eye. However, changes are

minimum, and entails subtle variations in the cell surface.

At these early time points and with the proper cell imaging

settings, CNNs were able to at least emulate human visual

recognition.We did not compare these results with human

prediction. We think this would be misleading, since hu-

mans are not necessarily trained to detect such minimal

changes, and if they were, we believe that they would or

should recognize morphological changes as effectively as

the CNN. There are other advantages of a neural network

applied to cell models, such as continuous, automatic,

real-time detection with high precision. Altogether, such

powerful systems will soon overcome human capacity.

The application of DL in this work should be empha-

sized by its simplicity. We used plain, phase contrast im-

ages taken in a transmitted light microscope with a 103

objective. There was no need to process the images in

any form or to apply complex protocols for differentia-

tion. Moreover, detection of the morphological changes

was performed at a very short time from the beginning

of the assay. Training a network has also become simpler

with the development of frontend software applications,

such as Keras or pyTorch. Finally, the use of GPU allows

to process many images with good definition in a rela-

tively short time. Without GPU support, in fact, this

training would not have been possible in a sensible

amount of time. All these factors make CNNs a field

where many image applications will based their analyses

in the oncoming years.

We believe that several conditions allowed us to reach

such a high accuracywith the trained neural network. First,

cell seeding at a high density was important to provide
enough information to the algorithm. We cannot rule

out, however, that with more training and different set

up a CNN would get a high accuracy with just one cell

colony. Second, the size of the starting images were

480 3 640 pixels, increasing the calculation burden but

providing enough details to the CNN. Third, we trained

very deep CNNs, with dozens of hidden layers. A shallower

network proved useless to train our set of images. Fourth,

we made use of image preprocessing, which artificially in-

creases the number of images provided to the CNNs. We

found, however, that too much image preprocessing was

detrimental for the accuracy and loss. Hence,most effective

trainings were reached when image preprocessing was

limited to flipping the image in both directions. However,

we also divided each original image in four, which may

be seen as zooming into the four quadrants. We believe

that subtle image augmentation, such as blurring, contrast,

or bright enhancements, could eventually improve perfor-

mance in other settings, but more technical work is needed

to confirm this.

DL predictions applied on a live imaging setupwill be one

of the most exciting applications in the next few years.

Therefore, we were interested in how the trained network

would work on images taken at earlier times. We found

that the high accuracy starts approximately 30 min from

the onset of differentiation, although a moderate accuracy

is already seen at 20 min. This experiment predicts the

future use of neural networks on real-time prediction in

cell culture experiments. Generalization on each specific

contextwill be critical for theapplicabilityofDL techniques.

A few papers are now reporting the use of DL training in

the field of cell biology. Some papers processing high com-

plex images have been published, and DL has been shown

to provide a great advantage in this setting. Hay and Partha-

sarathy (2018) used a self-developed CNN to identify bacte-

ria in a 3D microscope images, reaching approximately

90% of accuracy. Pärnamaa and Parts (2017) used also a

shallow network to identify subcellular structures, with

an accuracy of approximately 90%. Eulenberg et al.

(2017) identified the cell-cycle phases in Jurkat cells

with high accuracy. However, not too many papers have

tried to classify cells based on simple images taken in a

transmission light microscope. Recently, Kusumoto et al.
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Figure 6. CNN Training on Different PSCs
Experimental Setups
(A) CNN training and validation of 46C mESCs
cultured in 2i + LIF and in FBS + LIF conditions.
Representative images in 2i + LIF (left) or FBS +
LIF (right).
(B) Training and validation accuracy and
training and validation loss for mESCs in 2i +
LIF versus FBS + LIF. Of note, validation accu-
racy was above 0.95.
(C) Confusion matrix of an independent set of
images classified using the trained CNN for
mESCs in 2i + LIF versus FBS + LIF. Classifica-
tion accuracy was of 1.
(D) CNN training and validation of undiffer-
entiated hiPSCs and during early mesodermal
induction. Representative images of hiPSCs
colonies cultured in the undifferentiated state
(left) or after 24 h induction in StemPro-34
with Activin A and BMP4, and VEGF (right).
(E) Training and validation accuracy and
training and validation loss for hiPSCs. Of note,
validation accuracy was above 0.95.
(F) Confusion matrix of an independent set of
images classified using the trained CNN for
hiPSCs. Classification accuracy was of 0.97.
Scale bars, 100 mm.
(2018) used DL to classify PSC versus PSC-derived endothe-

lial cells after 6 days of differentiation. These authors used

two shallow CNNs, LeNet, and AlexNet. These network

yielded between 80% and 90% of accuracy in positive iden-

tification of the cell population. Although encouraging,

these results were far from optimal. The use of these

shallow networks may be appealing because of lower

computational needs, but they proved not to be accurate

compared with the deeper networks used in our paper.
856 Stem Cell Reports j Vol. 12 j 845–859 j April 9, 2019
Even though these results are at the top of the possible ac-

curacy, some caveats should be mentioned. First, we

applied these CNNs for a limited type of stem cell differen-

tiation assays. To what extent these results translate to

other setting remains to be established.We proved an inter-

nal validity of the trained network by applying it multiple

times, but an external validation (other cells, labs, and/or

microscope) remains to be assessed. However, we think

that the ability of CNNs is such that it should be able to



classify cell images inmany different contexts. Second, the

field is growing fast. There are many other CNN architec-

tures and strategies (e.g., GAN, segmentation, CapsNets)

that deserve attention. We did not try any of them as we

got excellent results with our strategies. However, it may

be possible to apply them and achieve a better perfor-

mance, such as reducing training time or reducing the

number of images needed to train. Finally, although effec-

tive, we kept our work simple. We only compared two

groups using a 103 objective and we did not use any fluo-

rescence labeling. Any modification of our experimental

setting should be extensively tested, but we believe that

the strength of the application of neural networks for im-

age recognition in this setting is proved.

In conclusion, we trained a CNN to identify PSCs from

very early differentiating PSCs. The trained network al-

lowed a very high rate of prediction, almost to 1. Moreover,

the ability to differentiate may be as low as 20min after the

onset of differentiation. It is hard to think of any other cell

assay that can confirm differentiation in such a short time

with such precision and at such a low cost. We believe that

DL and convoluted neural networks will change how cell

assays are performed in the near future.
EXPERIMENTAL PROCEDURES

Cells and Differentiation Protocols
Mouse ESCs were grown in defined conditions that support the

ground state of pluripotency. In brief, 46C mESCs were grown in

the chemically defined medium N2B27 supplemented with

1,000 U/mL human LIF (Gibco), 1 mM PD0325901 (Tocris), and

3 mM CHIR99021 (Tocris), hereafter called ‘‘2i + LIF medium.’’

N2B27medium formulation is described in detail elsewhere (Wais-

man et al., 2017). Cells were grown at 37�C in a 5% CO2 incubator

on 0.1% gelatin-coated dishes and were passaged every 2–3 days

using TrypLE (Gibco). To induce EpiLC differentiation, mESCs

were plated the day before in 2i + LIF medium at a density of

30 3 10 or 60 3 10 cells/cm. The following day, cells were washed

two times with 13 PBS and differentiated in N2B27 medium con-

taining 1% KSR (Gibco), 12 ng/mL basic fibroblast growth factor

(Thermo Fisher Scientific), and 20 ng/mL Activin (Thermo Fisher

Scientific), hereafter called ‘‘EpiLCs medium.’’ For control cells,

fresh 2i + LIF medium was added. To analyze the morphology of

cells in the presence of FBS and LIF, cells were grown inDMEM sup-

plemented with 15% FBS, 100 mM minimum essential medium

nonessential amino acids, 0.5 mM 2-mercaptoethanol, 2 mM

GlutaMax with the addition of 1,000 U/mL of LIF, all reagents pur-

chased fromGibco. Cells were seeded at 603 10 cells/cm. The 46C

cell line used throughout this work was a kind gift of Austin Smith.

E14-derived Ainv15 mESCs used in Figure S2, purchased from

ATCC, were also seeded at 60 3 10 cells/cm.

Human induced PSCs were generated previously in our lab

(Questa et al., 2016). We regularly grow them in E8-Flex in Geltrex

or Vitronectin-coated plates (all Thermo Fischer Scientific). For

early mesoderm differentiation, we replaced E8-Flex medium
with StemPro-34 medium supplemented with BMP4, Activin A,

and VEGF (all 10 ng/mL) for 24 h (Evseenko et al., 2010).

Cell Imaging and Image Processing
Random images were taken at consecutive hours post differentia-

tion in an EVOS microscope (Thermo Fischer Scientific). Cells

were plated at the indicated cell densities in 12-well plates (Corn-

ing), and cells were seeded approximately 24 h before imaging.

We used a 103 objective with light transmission. Light intensity

was set at 40%. Image files were saved in jpg format. The standard

output of the EVOS images is 9603 1,280 pixels in three channels

(RGB). Each picture was then sliced to get images of 480 3

640 pixels by applying the python script ImageSlicer (Dobson,

2018). These dimensions were downsized to 240 3 320 at the

time of training.

For the images taken in the 24-h experiment, we took images

from three biological replicates with two identical wells in each

condition, running control and differentiation in parallel. The

final number of images was between 300 and 400. For the experi-

ments with 1 and 2 h differentiation, 4 biological replicates were

done and between 70 and 100 images were taken from each condi-

tion. We then fed the network with 2,134 images for training

(900 in the 2i + LIF group and 1,134 in the Differentiation group),

and 400 for validation (200 in each group). One hundred images

(50 per group) were reserved for independent prediction after

training. Independent replicates (n = 3) were run and prepared in

the same way.

Cell Staining and Analysis
For immunofluorescence experiments, cells were grown on Lab-

Tek 8-well chamber slide (Nunc) previously coated for 30 min

with Geltrex (Thermo Fisher Scientific). Cells were fixed for

20 min with 4% paraformaldehyde, permeabilized with 0.1%

Triton X-100 PBS (PBST) and blocked with 3% normal donkey

serum in PBST. Primary antibody against phospho-p44/42 MAPK

(Erk1/2) (Cell Signaling no. 4,370) was added in block solution,

incubated at 4�C overnight, and then washed three times in

PBST for 30 min. Texas Red-X Phalloidin (Molecular Probes), sec-

ondary antibody and DAPI were incubated in block solution at

room temperature for 30 min. Samples were washed as before,

mounted, and imaged on an EVOS fluorescence microscope

(Thermo Fisher Scientific).

Real-Time PCR
Gene expression was analyzed as described previously (Waisman

et al., 2017). In brief, total RNA was extracted with TRI Reagent

(Sigma Aldrich) following the manufacturer’s instructions, treated

with DNAse (Thermo Fisher Scientific), and reverse transcribed us-

ing MMLV reverse transcriptase (Promega). Quantitative PCR was

performed in a StepOne Real-Time PCR system (Applied Bio-

systems). Gene expression was normalized to the geometrical

mean of GAPDH and PGK1 housekeeping genes, data were then

log transformed and relativized to the average of the biological rep-

licates for the 2i + LIF condition. Primers sequences were reported

previously (Waisman et al., 2017). Statistical significance for qPCR

data was analyzed by randomized block design ANOVA. Compari-

son between means were assessed using Tukey test.
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CNN Networks and Training
Neural network trainings were performed in a p2.xlarge instance

from AmazonWeb Service (www.aws.amazon.com). This instance

provides cloud computing with 4 CPUs, a RAM of 61 Gb, and one

NDIVIAK80GPU.Computingwas done in a preconfigure environ-

ment for DL based onUbuntu (v.16.04). Trainingwas performed in

Keras (v.2.1.5) (Chollet and others, 2015), with TensorFlow

(v.1.6.0) as backend. A code example is available in GitHub.

Detailed information about CNN training can be found in the Sup-

plemental Experimental Procedures.

Colony Morphological Analysis
Morphological analyses of cell colonies were performed using FIJI/

ImageJ and customR scripts. Formore information, see the Supple-

mental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/

10.1016/j.stemcr.2019.02.004.
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