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1☯, Nelba Pérez1☯, Sheila CastañedaID

1, Paula

Melania Milone1, Marı́a Agustina Scarafı́aID
1, Alan Miqueas Möbbs1, Ariel Waisman1,2,

Lucı́a Natalia Moro1,2, Gustavo Emilio Sevlever1, Carlos Daniel Luzzani1,2, Santiago

Gabriel Miriuka1,2*

1 Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina,

2 Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Ciudad Autónoma de Buenos

Aires, Buenos Aires, Argentina

☯ These authors contributed equally to this work.

* smiriuka@fleni.org.ar

Abstract

Cell death experiments are routinely done in many labs around the world, these experiments

are the backbone of many assays for drug development. Cell death detection is usually per-

formed in many ways, and requires time and reagents. However, cell death is preceded by

slight morphological changes in cell shape and texture. In this paper, we trained a neural

network to classify cells undergoing cell death. We found that the network was able to highly

predict cell death after one hour of exposure to camptothecin. Moreover, this prediction

largely outperforms human ability. Finally, we provide a simple python tool that can broadly

be used to detect cell death.

Introduction

In the past few years there has been an increasing interest in artificial intelligence. The combi-

nation of newer algorithms for modelling biological data and increasing computational capaci-

ties have sparked an overwhelming amount of research for academic and biomedical purposes

[1]. In particular, deep learning (DL) models inspired in neural networks (NN) have proved to

be powerful. These models, called convolutional neural networks (CNN), employ backpropa-

gation algorithms to reconfigure its parameters in successive layers while attempting to repre-

sent the input data [2], allowing them to classify complex and large sets of information,

including digital images. Therefore, one of the most active fields is image recognition [3, 4].

Cell death is a complex event found in normal and pathological contexts [5]. For this rea-

son, it is widely studied in biomedical research and it is a hallmark of many experiments, par-

ticularly in the context of drug discovery [6, 7]. Many different assays have been developed in

the past decades in order to analyse cell death. All of them involve the analysis of particular fea-

tures of a dying cell, including DNA fragmentation, cell membrane protein flipping, protein

modifications, etc [8–10]. In any case, there is need for time and money in order to perform
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celldeath: A tool for detection of cell death in

transmitted light microscopy images by deep

learning-based visual recognition. PLoS ONE

16(6): e0253666. https://doi.org/10.1371/journal.

pone.0253666

Editor: Chi-Hua Chen, Fuzhou University, CHINA

Received: February 12, 2021

Accepted: June 9, 2021

Published: June 24, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0253666

Copyright: © 2021 La Greca et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Image data are fully

available without restrictions from https://www.

kaggle.com/miriukalaboratory/cell-death-in-seven-

cell-lines.

https://orcid.org/0000-0002-0309-7683
https://orcid.org/0000-0003-2856-7685
https://orcid.org/0000-0001-9361-6637
https://doi.org/10.1371/journal.pone.0253666
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253666&domain=pdf&date_stamp=2021-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253666&domain=pdf&date_stamp=2021-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253666&domain=pdf&date_stamp=2021-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253666&domain=pdf&date_stamp=2021-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253666&domain=pdf&date_stamp=2021-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253666&domain=pdf&date_stamp=2021-06-24
https://doi.org/10.1371/journal.pone.0253666
https://doi.org/10.1371/journal.pone.0253666
https://doi.org/10.1371/journal.pone.0253666
http://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/miriukalaboratory/cell-death-in-seven-cell-lines
https://www.kaggle.com/miriukalaboratory/cell-death-in-seven-cell-lines
https://www.kaggle.com/miriukalaboratory/cell-death-in-seven-cell-lines


these assays. An interesting approach by Chen and collaborators using weakly supervised

CNN models demonstrated that they could confidently detect and count dead cells in bright-

field images of cell cultures [11].

Recently, we published that NN can be used to classify transmitted light microscopy (TLM)

images of differentiating pluripotent stem cells at one hour and even less, with an accuracy

higher than 99% [12]. Hence, we demonstrated that applying DL over TLM images can be a

powerful technology for specific purposes: we can identify the early stages of complex pro-

cesses like differentiation or cell death, with nearly no money spent and with high precision.

Experimental confirmation of these processes otherwise would require the use of an assay

often involving time and money in several orders of magnitude. We are confident that our

experience and that of many others will radically change the way fields in biology are engaged

[13, 14].

In the present work we aimed to develop a simple tool for easy, fast and accurate classifica-

tion of cell death in culture using TLM images. We believe that this tool can be used in any

scientific lab running cell death experiments, particularly in those cases when massive and

repetitive experimental settings are needed such as drug screening in cancer research.

Materials and methods

Cell culture and cell death induction

The four cancer cell lines and the three pluripotent stem cells used in this analysis were kept in

a humidified air-filtered atmosphere at 37˚C and 5% CO2. Osteosarcoma U2OS cells and

breast cancer MCF7 cells were routinely cultured in Dulbecco’s Modified Eagle Medium (ref.

12430054, DMEM; Thermo Fisher Scientific, United States) supplemented with 10% fetal

bovine serum (NTC-500, FBS; Natocor, Argentina) and 1% penicillin/streptomycin (ref.

15140–122, Pen/Strep; Thermo Fisher Scientific, United States), while prostate cancer PC3

cells and breast cancer T47D cells were cultured in Roswell Park Memorial Institute medium

(ref. 22400089, RPMI; Thermo Fisher Scientific, United States) supplemented with 10% FBS

and Pen/Strep. Induced pluripotent stem cells (iPS1 and iPS2, both previously developed in

our lab [15]) and embryonic stem cells (H9) were maintained on GeltrexTM (ref. A1413302;

Thermo Fisher Scientific, United States)-coated dishes using Essential 8 flex defined medium

(ref. A2858501, E8 flex; Thermo Fisher Scientific, United States), replacing it each day. All cells

were detached with TrypLETM Select 1X (ref. A1217702; Thermo Fisher Scientific, United

States) every 4 or 5 days depending on density. For death induction experiments, approxi-

mately 3x105 cells were seeded in the 4 central wells of 12-well dishes (ref. 3513; CORNING

Inc., United States), thus reducing potential border effects. The following day cancer cells were

serum-deprived for 24h and then all cell lines were treated either with camptothecin 1–10μM

(ref. C9911, CPT; Sigma-Merck, Argentina) or DMSO (ref. D2660, dimethyl sulfoxide; Sigma-

Merck, Argentina) for the times indicated in experiments. To prevent addition of high doses

of DMSO in high-concentration CPT treatments, more concentrated stock solutions were

employed. Transmitted light microscopy images were taken immediately before adding the

treatments and every hour until conclusion. Summarized information and further details on

cell lines can be found in S1 Table.

DNA damage assessment

Immunostaining was performed as previously described [16] with minor modifications.

Briefly, cells treated with CPT or DMSO were fixed in 4% paraformaldehyde for 30min at

room temperature and washed 3 times with PBS. Then, they were permeabilized in 0.1%

bovine serum albumin (BSA)/PBS and 0.1% Triton X-100 solution for 1h, followed by
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blocking in 10% normal goat serum/PBS and 0.1% Tween20 solution. Incubation with primary

antibodies against γH2AX (rabbit IgG, ref. ab2893; Abcam, United States) and p53 (mouse

IgG, ref. ab1101; Abcam, United States) were performed overnight at 4˚C in 1:100 dilutions in

blocking solution and later secondary antibody incubation with Alexa Fluor 594 (anti-mouse,

ref. R37121; Thermo Fisher Scientific, United States) and Alexa Fluor 488 (anti-rabbit, ref.

A11034; Thermo Fisher Scientific, United States) was done in the dark at room temperature

for 1h together with DAPI. Cells were washed and then imaged on EVOS fluorescence micro-

scope (Thermo Fisher Scientific, United States). Nonspecific secondary antibody binding was

evaluated in the absence of primary antibodies. Images from four fields of three independent

replicates were processed and analysed automatically using custom macro scripts (ImageJ soft-

ware) to determine mean fluorescent intensity per nucleus and statistical significance between

CPT-treated and vehicle-treated cell populations was evaluated by Welch Two Sample t-test

using R.

AnnexinV assay

Translocation of phosphatidylserine (PS) residues in apoptotic cells was detected with Annex-

inV-FITC (ref. 556547; BD Pharmingen, United States) and AnnexinV-PE (ref. 559763; BD

Pharmingen, United States) commercial kits, following instructions from manufacturer.

Untreated and treated cells (CPT or DMSO) were collected from wells with TrypLETM 1X

(including supernatants), incubated with reagents provided in the kit and finally ran on BD

Accuri Flow Cytometer. Results from three independent replicates were analysed using FlowJo

(v7.6) software and statistical significance between CPT-treated and DMSO-treated cell popu-

lations from third quadrant (Q3) was evaluated by Welch Two Sample t-test using R.

Transmitted light imaging

Cell images were captured in EVOS microscope using a 20x objective and setting light inten-

sity at 40%. Between 30 and 50 images were taken across each of the 4 central wells (2 with

CPT and 2 with DMSO) of multiwell plates (4 independent experiments) for each of the 7 cell

lines described in Cell culture and cell death induction, avoiding field overlapping or any places

with few or no cells and stored as png files. Size of these images was originally 960x1280 pixels,

though we applied a short python script (image-slicer) to slice them into four parts in order to

obtain four images from each one (480,640,3). This produced a total of 58596 images consider-

ing all timepoints (0, 1, 2 and 3h).

Deep learning analysis

For deep learning training and prediction, we used fast.ai (v1.0.60), a frontend of PyTorch

(v1.4). Briefly, training was done by using several different convolutional neural networks.

ResNet50 architecture [17–19], however, was chosen among different options (ResNet34,

ResNet101 and DenseNet121) because it rendered excellent results and it is widely known.

Specifications on the CNN may be found in S2 Table. For analyses, images from all cell lines

were split in four as previously explained resulting in a total of 15224 images from 1h, 15312

from 2h and 15032 from 3h treatments. We assigned an entire independent experiment (1 of

4) as the test set and then randomly divided the other 3 into 70% for training and 30% for vali-

dation. Final number of images in each set for all conditions assayed in this work are detailed

in S3 Table. Pretrained model weights were obtained from available trainings on benchmark

ImageNet dataset. Class activation maps (CAM) were constructed following specifications

by the fastai project using CPT-treated and DMSO-treated random PSC images [20]. A

python script with details on hyperparameter values used during trainings is available in
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https://github.com/miriukaLab/celldeath. Hardware specifications may be found in https://

github.com/miriukaLab/celldeath/blob/master/machineDetails.md.

Results

We defined a cell death model in all cell lines used in this work -three pluripotent stem cell

(PSC) lines and four cancer cell (CC) lines- by incubating them with camptothecin (CPT), a

topoisomerase I inhibitor. We have previously demonstrated that this molecule induces a very

rapid cell death signaling in human embryonic stem cells that derives in apoptosis [21]. In

each of the seven cell lines we titrated drug concentration and exposure time and took TLM

images hourly in both DMSO (vehicle) and CPT-treated cells.

To confirm that these cell lines were undergoing apoptosis we performed different assays.

Inhibition of topoisomerase I results in replication-dependent DNA double strand breaks

(DBSs) [22], which lead to the phosphorylation of H2AX (γH2AX) and activation of tumour

suppressor protein p53 [23, 24]. Consistently, iPS1 pluripotent stem cells treated with CPT

1μM for 1.5h showed an increment in nuclear signal of γH2AX as well as accumulation of p53

(Fig 1A). Compared to vehicle, the distributions of nuclear signals were significantly different

for both marks (Fig 1B). We observed similar results in H9 embryonic stem cells and in iPS2

induced pluripotent stem cells.

Significant CPT-dependent activation and nuclear localization of γH2AX and p53 (vs.

DMSO) were also found in MCF7 cancer cell line at 6h of treatment (Fig 1C and 1D). All CC

lines showed similar results between 3 and 6h of treatment with CPT. Interestingly, although

CC lines generally evince high proliferation rates, they were practically unaffected by 1μM

treatment with CPT and a concentration of 10μM was necessary to induce the apoptogenic

signaling.

Longer treatments with CPT resulted in a steady γH2AX and p53 nuclear signal in iPS1 and

MCF7 cells compared to vehicle (S1A and S1B Fig), indicating that CPT treatment effectively

triggers a sustained response to damaged DNA in both PSC and CC lines.

Apoptosis is a complex process and one of its earliest characteristic features is phosphatidyl-

serine (PS) exposure on the outer side of the cell membrane [25]. Identification of PS residues

on the surface of intact cells through its interaction with Annexin V protein enables detection

of early stages of apoptosis by flow cytometry analysis. Treatment with CPT between 3 and 6h

significantly increased the percentage of PS+/7-AAD− cells (Q3) compared to vehicle in both

iPS1 and MCF7 cells (Fig 1E and 1F, respectively). Positive values for each quadrant were

determined using single stained and double stained untreated samples (S1C and S1D Fig).

Taken together, these results indicate that CPT treatment induced damage to DNA which

eventually resulted in cell death by apoptosis in PSC and CC lines.

CNN training and overall performance

Transmitted light microscopy images from all cell lines were taken at 1, 2 and 3h post induc-

tion of cell death with CPT. Minor morphological changes, if any, are observed by the first

hour for all cell lines (Fig 2). In fact, deep and thorough observation is needed to capture subtle

alterations in a few cell lines. For example, some degree of cell-to-cell detachment was regis-

tered in PSC lines as well as in T47D cells, and in PC3 cells, increased cell volume was observed

in a portion of the images. However, none of these were markedly noticeable features and they

were only present in a fraction of the images. Although later timepoints evinced more pro-

nounced morphological changes (cell shrinkage, further detachment, nuclear condensation),

they were not easily or readily detected without proper preparation.
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Fig 1. Camptothecin treatment induced apoptosis in both iPS1 pluripotent stem cell and MCF7 cancer cell lines. A) Immunostaining with anti-

γH2AX and anti-p53 of iPS1 pluripotent cell line treated (CPT 1μM) or not (DMSO: vehicle) with CPT for 1.5h. Both marks were merged with DAPI

to reveal cell nuclei and scale was set to 200μm (white bar). Images are representative of four different microscopic fields. B) Distribution of mean

signal intensity per nucleus in all fields from A, measured in arbitrary units (log10 a.u.) for γH2AX (left) and p53 (right) marks. Statistical significance

between CPT and DMSO was evaluated by Welch Two-Sample t-test (�p-value = 2.2e−16). C) Immunostaining as in A for MCF7 cancer cell line

treated (CPT 10μM) or not with CPT for 6h. D) Mean signal intensity quantification and statistical significance were determined as in B (#p-
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Considering these minor morphological changes, we challenged 5 experienced researchers

(who had never seen the images before) to correctly classify a randomly-picked set of 50 1h

images (pre-training) as CPT or DMSO (vehicle). After the initial trial (without revealing per-

formance), we “trained” the researchers by showing them 500 labelled images (CPT or

DMSO) and then asked them to classify a new set of 50 images (post-training). Selection of

images for trials and trainings was performed regardless of cell line or treatment. Classification

performance by investigators before and after training was completely random (close to 50%

correct answers), indicating that they failed to retrieve specific features which unequivocally

identified each label (Fig 3A, grey bars). Moreover, decision making was mostly independent

of image-related biases as very few “all incorrect” answers were registered for any given image

(S2 Fig).

To assess whether deep learning-based models could outdo human performance in the

early assay-free detection of cell death features, we trained a Convolutional Neural Network

(CNN) using 1h CPT- and DMSO-treated images from all cell lines. The trained CNN was

able to correctly classify between 9 and 10 out of 10 images in the validation and test sets

(98.18pm0.33% and 96.56pm0.24% accuracy, respectively; see Methods for definition on vali-

dation and test sets) (Fig 3A, blue bars). Results presented here are based on ResNet50 NN

architecture, though other architectures showed similar results (ResNet34: 98% accuracy dur-

ing validation and 95% in test) (S3A Fig). While CNN robustness has been extensively tested

in many situations [26], learning issues due to model set up -namely underfitting and overfit-

ting [27]- are not uncommon and they are often associated to an unsuitable number of user-

defined parameters for representing input data (too few or too many). Incremental learning of

our CNN through each epoch (iterative process by which all samples in dataset took part in

updating weights and parameters of the model) was diagnosed by simultaneously assessing the

Loss function in the training and validation sets (Fig 3B). A minimum value in Loss function

was achieved within 50 epochs, when both the training and validation sets converged at a loss

value close to zero (stabilization). Extended training periods (over 200 epochs) did not dramat-

ically improve accuracy values (S3A Fig) or loss function outcome (S3B Fig).

Learning curves (loss function) clearly showed that our model was not only suitable, but

also capable of learning from input data (i.e. non-flat training curves) which is not the case in

underfitted models. However, reduced generalization capabilities of the model (overfitting)

are sometimes more difficult to detect considering that in fact the model is learning too well

from training set. To test for this possibility we trained our model for over 100 epochs and

found that the validation curve starts to increase over training curve around 280 (S3B Fig),

which suggests that our model was well-fitted and only exhibited overfitting if trained for

excessive periods of time.

CNN identifies very early features of cell death

Grouping all cell lines and training the NN with only two classes (or labels), reduced potential

outcomes to a binary choice between CPT or DMSO (vehicle). The final goal in this scenario

was to train a model where, irrespective of cell basal morphology, the CNN was able to identify

cell death. As pointed out before (CNN vs. human), successful classification at 1h was very

value = 4.89e−7; �p-value = 2.22e−16). E) Flow cytometry analysis with AnnexinV-PE of iPS1 cells treated with CPT 1μM (light blue) for 3h compared

to DMSO (red). Incubation with 7-AAD was performed to discriminate dead cells (Q2) from early apoptotic (Q3). Number of events (cells) in each

quadrant is presented as mean percentage of total population ± SEM of three independent replicates. Statistical significance between conditions in Q3

was evaluated with Welch Two-Sample t-test (�p-value = 2.5e−2). F) MCF7 cancer cells treated with CPT 10μM (light blue) for 6h were analysed as in

E, though using AnnexinV-FITC instead of PE.

https://doi.org/10.1371/journal.pone.0253666.g001
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Fig 2. Transmitted light images used for visual deep learning analysis. Representative images of DMSO (vehicle)- and CPT-treated cell lines for 1, 2 and 3h.

Scale bar is displayed in the pictures and equals to 50μm.

https://doi.org/10.1371/journal.pone.0253666.g002
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high (average accuracy of five runs in the validation set of 98.18±0.33% and 96.58±0.24% in

the test set), reaching maximum accuracy values for validation and test sets of 98.67% and

97.23%, respectively, when we compared all non-exposed (DMSO) images versus all exposed

ones (CPT) (Table 1). Moreover, employing a pretrained model, in which starting weights are

defined beforehand rather than randomly initialized, on the same setting (imagenet CsvD) did

not improve accuracy. Appropriate visual description for classification performance of our

model was rendered as a confusion matrix, in which predictions on each image were con-

trasted to actual labels (true value). In coherence with accuracy values, the matrix showed very

Fig 3. Results of CNN training. A) Comparison of human performance versus CNN. Pre (48.80±3.03%) and post-training (46.40±3.57%) results of five human

subjects are shown compared to five separate runs of CNN training for a validation (98.18±0.33%) and a test set (96.58±0.24%). B) Representative Learning Curve of

five independent CNN trainings using CPT and DMSO labels for 50 epochs. Accuracy curve for the same representative run is shown. C) Confusion matrix of CPT

versus DMSO for training with highest test accuracy results. The highly accurate model led to very low false positives (65) and false negatives (52) during prediction on

test set. D) Representative Learning Curve and accuracy of three independent CNN trainings using all cell lines and treatments as labels for 50 epochs. E) Confusion

matrix of training with highest test accuracy results for all-versus-all analysis of test set. F) Validation accuracy results for training sets missing one cell line. The

missing cell line was used as test set; testing accuracy for every run is shown in Table 2.

https://doi.org/10.1371/journal.pone.0253666.g003
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few misclassification events for the total 4,188 images consisting of 65 false positives (predicted

CPT, but actually DMSO) and 52 false negatives (predicted DMSO, but actually CPT) (Fig

3C). Furthermore, we found that employing the same model on longer exposure times to CPT

(2 and 3h) slightly favoured an increase in validation accuracy and attenuated false detection,

probably because drug-associated effects became more pronounced (S3C and S3D Fig).

To further test our model, we trained the NN to classify each cell line in each treatment

(ALL vs. ALL) demonstrating a good performance as well (Fig 3D). In this case, classification

was considerably improved by using a pretrained model (imagenet AvsA), with a final highest

accuracy of 87% in the test set (Table 1). Although the matrix showed very few misclassifica-

tion events in general, the model frequently confused DMSO-treated iPS1 for DMSO-treated

iPS2 and CPT-treated iPS1 for CPT-treated iPS2 (Fig 3E), probably due to their induced-plu-

ripotent nature. Importantly, it rarely failed to discriminate CPT from DMSO. This diago-

nally-populated matrix indicates that the CNN was capable of identifying cell-specific death

features to correctly discriminate all labels (predicted = actual). We corroborated this finding

by training, validating and testing the CNN with each cell line individually (Table 1), and

again classification performance was excellent, indicating that the model can be confidently

and easily applied to single or multicellular experimental layouts.

Surprisingly, we discovered that if we purposely set aside all images of one cell line during

training, in some cases our model could discriminate CPT from DMSO images of that cell line

during testing (Valid. accuracy ≊ Test accuracy). Even though validation accuracies were

remarkably high for all training sets (Fig 3F), the model failed to accurately discriminate labels

during testing with PC3 (53%) and U2OS (64%) cancer cell lines (Table 2). However, testing

on the other cell lines resulted in accuracy values over 75%, particularly in PSC lines, which

means that the CNN was partially able to classify images from “unknown” cells. Thus we

believe that some features found useful for classification during validation might be extrapo-

lated to unseen cell lines, but that highly cell-specific facets interfere with pattern matching.

Therefore, it is always preferable that training of our model includes the cell line on which cell

death prediction is intended.

Table 1. Model performance for different conditions.

Condition Train. Loss Val. Loss Val. Acc. Test Acc.

CPTvs.DMSO 0.068 0.045 0.9837 0.9723

imagenet(CvsD) 0.055 0.051 0.9825 0.9790

ALLvs.ALL 0.068 0.330 0.9979 0.8271

imagenet(AvsA) 0.029 0.035 0.9900 0.8658

PC3 0.138 0.041 0.986 0.955

MCF7 0.081 0.146 0.9528 0.9234

T47D 0.204 0.054 0.9746 0.8667

U2O2 0.141 0.002 1.000 0.9444

iPS1 0.379 0.056 0.998 0.970

iPS2 0.091 0.0007 1.000 0.948

ESC(H9) 0.007 0.002 1.000 0.996

Highest value of accuracy achieved in the test set (Test Acc.) among several trainings is presented for each condition

at 1h. Corresponding values of the Loss function for training (Train. Loss) and validation (Val. Loss) are shown as

well as accuracy on validation set (Val. Acc.). Results of running a pretrained model on CPT vs. DMSO (imagenet

CvsD) and ALL vs. ALL (imagenet AvsA) conditions were included.

https://doi.org/10.1371/journal.pone.0253666.t001

PLOS ONE Cell death detection by CNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0253666 June 24, 2021 9 / 15

https://doi.org/10.1371/journal.pone.0253666.t001
https://doi.org/10.1371/journal.pone.0253666


Finally, we analysed the images in search of features which potentially contributed the most

to classification. To do so we employed class activation maps (CAM) that reconstruct heat-

map-like visualizations merging the information provided by the last convolutional layer and

the model predictions [20]. In other words, these heatmaps represent the score of each feature

used during the decision making process as a colour-guided graphic which may facilitate

human interpretation. Even though it was not clear which characteristics were in fact support-

ing the decision, our results demonstrate that classification was based upon features present in

cell-occupied regions of the images (high activation areas) (Fig 4).

Table 2. Model performance after removing a cell line from training.

Cell line out Train. Loss Val. Loss Val. Acc. Test Acc.

PC3 0.053 0.032 0.9872 0.5283

MCF7 0.054 0.038 0.9901 0.8688

T47D 0.071 0.047 0.9858 0.7734

U2OS 0.043 0.059 0.9800 0.6363

iPS1 0.063 0.052 0.9820 0.9871

iPS2 0.046 0.056 0.9826 0.9708

ESC(H9) 0.076 0.058 0.9822 0.9752

Removed cell line (Cell line out) was used for testing the model. Highest value of accuracy achieved during testing

(Test Acc.) for each cell line is shown. Corresponding values of the Loss function for training (Train. Loss) and

validation (Val. Loss) are shown as well as accuracy on validation set (Val. Acc.).

https://doi.org/10.1371/journal.pone.0253666.t002

Fig 4. Features contributing to classification. Representative images of 1h CPT- and DMSO-treated PSC cells (brightfield) and

corresponding class activation maps (heatmap). Areas in bright yellow indicate high activation for decision making and areas in purple

correspond to low activation. Scale bar is displayed in the pictures and equals to 100μm.

https://doi.org/10.1371/journal.pone.0253666.g004
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Discussion

Deep learning techniques are being increasingly used in the biomedical field [14, 28]. Specifi-

cally for detection of morphological changes, we [12] and others [29–32] have previously

applied deep learning for different experimental approaches using TLM. For example, Ounko-

mol et al provided evidence that a DL model can predict immunofluorescence in TLM cells

[30]. Jimenez-Carretero et al predicted fluorescent toxicity looking at changes in stained cell

nuclei [32]. In a similar paper than ours, Richmond et al applied a CNN on TLM images in

order to predict phototoxicity, but their accuracy was approximately 94.5%, probably related

to the shallow network they used. Moreover, it took them 16h of training to reach this level,

whereas our model gets ≊99% accuracy in approximately 3–4h using a similar hardware.

Finally, they did not provide any easy way to reproduce and apply their findings.

In this work we showed that convolutional neural networks can be trained to recognize

very early features of cell death. We trained the NN with images taken just after one hour of

starting cell death induction, at which point the human eye was unable to identify morphologi-

cal changes to correctly classify a set of images. We conducted a standard “single-blind” test in

which several trained investigators from our institution assessed a set of images and attempted

to classify them into treated (CPT) or vehicle (DMSO). Although we allowed them to train

after the initial trial, investigators were unable to properly identify the very early changes in

cell death. In fact, their results were practically random. However, their low performance may

be related to the fact that any regular cell culture exhibits some degree of cell death, and actu-

ally our experiments showed that a few cells in the control group displayed translocation of

annexin V (Fig 1E and 1F). While this might constitute a potential confounding factor for the

researcher, it does not apparently impact on CNN learning. In the last few years there have

been significant advances in whole-image-recognition approaches, but still it is not always pos-

sible to clearly identify which image features shift the balance towards an accurate classifica-

tion. Although computer-vision (field of image recognition) scientists are developing new and

more complex algorithms (e.g. class activation maps, occlusion, deconvolution) in an attempt

to better interpret these features and correct for model biases, there is no rigorous consensus

in the field on what the network might be considering relevant and how to expose it [33]. We

believe that our model could be recognizing subtle alterations in cell membrane, cytoplasmic

vesicles and/or changes in the nuclear morphology proper of the ongoing cell death process

rather than cues from the background.

In our experiments we found that DL algorithms can reach high accuracy values for detec-

tion of morphological changes in TLM images. Particularly, PSC lines produced better test

results than CC lines in all conditions, indicating that CPT-induced features are perhaps more

easily recognizable in the former. Consistently, the effects of CPT treatment collected by flow

cytometry and immunofluorescence were already visible by 1h in PSC lines, while it took no

less than 3h and higher CPT concentrations to achieve similar results in CC lines. In line with

our observations, previous results demonstrated that pluripotent cells were in fact more sensi-

tive to CPT treatment compared to differentiated cells [34, 35] and it is also possible that the

accumulation of mutations associated with cancer cell lines could have conferred some degree

of tolerance against DNA damage.

Improving training results of a CNN is not an easy challenge. While it is true that imple-

menting models based on widely known architectures (e.g. ResNet50) incorporates many stan-

dard settings and default hyperparameter values, fine-tuning a model is typically an empirical

endeavour. One of the major determinants in achieving well-trained models relies on the

number of samples employed in the run [36, 37]. This was clearly demonstrated when we fur-

ther explored the capabilities of our model by introducing more labels to the same training set
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(less images per label), which resulted in a weaker performance. Instead of the initial binary

setting (CPT vs. DMSO), in this case labels included the name of each cell line as well (ALL vs.

ALL) culminating in accuracy values on the test set that dropped nearly 15%. When increasing

sample size is not feasible, there are still several options to enhance performance (e.g. data aug-

mentation, learning rates adjustment). The use of pretrained models that carry weights infor-

mation from training on benchmark datasets like ImageNet (transfer learning), might help to

reduce training time and generalization errors (prediction) [38].

Generalization is a major goal in deep learning (i.e. predictive modelling) [2], though as a

rule of thumb, to predict if “something is a dog”, one must train the network with images of

dogs. In that matter, our model was able to accurately classify images from a biological repli-

cate not included in the training set (Fig 3C and 3E). Unexpectedly, it also showed a remark-

able capacity to discriminate treated and untreated images from previously unseen cell lines.

This suggests that the network was capable of extracting some features intrinsically associated

to the cell death process and extrapolate them onto unknown but related images (the left out

cell line in our case). However, these results should not be interpreted as the identification of

hallmark morphological signatures of the apoptotic process. In spite of displaying neither

under- nor overfitting during training, the model did not produce similar results on CC and

PSC lines, which is plausibly related to the higher sensitivity of PSC lines to CPT (more distin-

guishable features at earlier timepoints, 1 to 3h). In fact, it should be a notable reminder that

input-dependent factors (e.g. cell type-specific morphology, drug response time, pathway acti-

vation) will influence the predictive power of the model. Hence, we strongly recommend

including all cell lines and conditions on which future predictions are intended to capture the

complexity of input data and achieve test accuracy results comparable to validation. Ade-

quately representing the complexity in input image data is the empirical result of balancing

network performance and generalization (visit https://github.com/miriukaLab/celldeath for

details on tunable parameters).

Besides the proof of concept regarding the ability of NN for cell death detection, we also

provide a set of scripts wrapped in a python-based tool for a straightforward implementation

of this technology. In everyday laboratory practice, this may be a significant advantage for

designing and running experiments as it is possible to scale-up throughput and more impor-

tantly readout. In particular, the use of these technologies together with automation in highly

repetitive assays should increase reproducibility and reduce costs. With minimal knowledge

on deep learning and command line usage, any researcher can run our scripts to get results

similar to ours on their own sets of images.

In conclusion, we found that DL can be applied for cell death recognition in transmitted

light microscopy images and we provide a user-friendly tool to be implemented in any lab

working on cell death.
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stained with anti-γH2AX or anti-p53 and nuclei were revealed with DAPI. Scale was set to

200um (white bar). B) MCF7 cells were treated or not (DMSO) with CPT 10uM for 8h. Cells

were stained as in A. C) Controls used for setting background levels in iPS1 flow cytometry

experiments. D) Controls used for setting background levels in MCF7 flow cytometry experi-

ments.
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S2 Fig. Human trials. Detailed results of five subjects involved in scientific activities tested for

their capacity to discriminate cells treated with CPT from DMSO before (Pre-) and after

(Post-) being trained with a different set of images.
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S3 Fig. Neural network performance. A) Comparison of accuracy results between ResNet50

and ResNet34 architectures using the same input data and parameters. B) Learning curve

(training and validation sets) for ResNet50 architecture during extended training (400 epochs).

Point of inflection in validation curve is indicated with an arrow inside the inset box. Valida-

tion accuracy for the training run is also shown. C) Confusion matrix for images of 2h CPT/

DMSO-treated cells. D) Confusion matrix for images of 3h CPT/DMSO-treated cells.
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