dc.contributor.author |
Quintero Rincón, Antonio |
|
dc.contributor.author |
Flugelman, Máximo |
|
dc.contributor.author |
Prendes, Jorge |
|
dc.contributor.author |
D'Giano, Carlos |
|
dc.date.accessioned |
2019-11-08T15:12:09Z |
|
dc.date.available |
2019-11-08T15:12:09Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Quintero Rincón A, Flugelman M, Prendes J, D’Giano C. Study on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic regression. Rev Argent Bioing. 2019;23(2):17-24 |
en_US |
dc.identifier.uri |
http://revista.sabi.org.ar/index.php/revista/issue/view/14 |
|
dc.identifier.uri |
https://repositorio.fleni.org.ar/handle/123456789/103 |
|
dc.description.abstract |
Seizure detection plays a central role in most aspects of epilepsy care. Understanding the complex
epileptic signals system is a typical problem in electroencephalographic (EEG) signal processing. This problem requires
different analysis to reveal the underlying behavior of EEG signals. An example of this is the non-linear dynamic:
mathematical tools applied to biomedical problems with the purpose of extracting features or quantifying EEG data.
In this work, we studied epileptic seizure detection independently in each brain rhythms from a multilevel 1D wavelet
decomposition followed by the independent component analysis (ICA) representation of multivariate EEG signals.
Next, the largest Lyapunov exponents (LLE) and their scaling given by its ± standard deviation are estimated in
order to obtain the vectors to be used during the training and classification stage. With this information, a logistic
regression classification is proposed with the aim of discriminating between seizure and non-seizure. Preliminary
experiments with 99 epileptic events suggest that the proposed methodology is a powerful tool for detecting seizures
in epileptic signals in terms of classification accuracy, sensitivity and specificity |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
Sociedad Argentina de Bioingeniería |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.rights.uri |
https://creativecommons.org/licenses/by/2.5/ar/ |
|
dc.subject |
Largest Lyapunov Exponents |
en_US |
dc.subject |
Exponente de Lyapunov |
en_US |
dc.subject |
Logistic Models |
en_US |
dc.subject |
Modelos Logísticos |
en_US |
dc.subject |
Electroencephalography |
en_US |
dc.subject |
Electroencefalografía |
en_US |
dc.title |
Study on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic regression |
en_US |
dc.type |
info:eu-repo/semantics/publishedVersion |
|
dc.type |
info:eu-repo/semantics/article |
en_US |
dc.description.fil |
Fil: Quintero Rincón, Antonio. Fleni; Argentina. |
|
dc.description.fil |
Fil: Flugelman, Máximo. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina. |
|
dc.description.fil |
Fil: Prendes, Jorge. University of Toulouse, Institut de Recherche en Informatique de Toulouse; Francia. |
|
dc.description.fil |
Fil: D'Giano, Jorge. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. |
|
dc.relation.ispartofVOLUME |
23 |
|
dc.relation.ispartofNUMBER |
2 |
|
dc.relation.ispartofPAGINATION |
17-24 |
|
dc.relation.ispartofCOUNTRY |
Argentina |
|
dc.relation.ispartofCITY |
Buenos Aires |
|
dc.relation.ispartofTITLE |
Revista Argentina de Bioingeniería |
|
dc.relation.ispartofISSN |
2591-376X |
|
dc.type.snrd |
info:ar-repo/semantics/artículo |
es_ES |