Mostrar el registro sencillo del ítem
dc.contributor.author | Quintero Rincón, Antonio | |
dc.contributor.author | Flugelman, Máximo | |
dc.contributor.author | Prendes, Jorge | |
dc.contributor.author | D'Giano, Carlos | |
dc.date.accessioned | 2019-11-08T15:12:09Z | |
dc.date.available | 2019-11-08T15:12:09Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Quintero Rincón A, Flugelman M, Prendes J, D’Giano C. Study on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic regression. Rev Argent Bioing. 2019;23(2):17-24 | en_US |
dc.identifier.uri | http://revista.sabi.org.ar/index.php/revista/issue/view/14 | |
dc.identifier.uri | https://repositorio.fleni.org.ar/handle/123456789/103 | |
dc.description.abstract | Seizure detection plays a central role in most aspects of epilepsy care. Understanding the complex epileptic signals system is a typical problem in electroencephalographic (EEG) signal processing. This problem requires different analysis to reveal the underlying behavior of EEG signals. An example of this is the non-linear dynamic: mathematical tools applied to biomedical problems with the purpose of extracting features or quantifying EEG data. In this work, we studied epileptic seizure detection independently in each brain rhythms from a multilevel 1D wavelet decomposition followed by the independent component analysis (ICA) representation of multivariate EEG signals. Next, the largest Lyapunov exponents (LLE) and their scaling given by its ± standard deviation are estimated in order to obtain the vectors to be used during the training and classification stage. With this information, a logistic regression classification is proposed with the aim of discriminating between seizure and non-seizure. Preliminary experiments with 99 epileptic events suggest that the proposed methodology is a powerful tool for detecting seizures in epileptic signals in terms of classification accuracy, sensitivity and specificity | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Sociedad Argentina de Bioingeniería | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/2.5/ar/ | |
dc.subject | Largest Lyapunov Exponents | en_US |
dc.subject | Exponente de Lyapunov | en_US |
dc.subject | Logistic Models | en_US |
dc.subject | Modelos Logísticos | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Electroencefalografía | en_US |
dc.title | Study on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic regression | en_US |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | info:eu-repo/semantics/article | en_US |
dc.description.fil | Fil: Quintero Rincón, Antonio. Fleni; Argentina. | |
dc.description.fil | Fil: Flugelman, Máximo. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina. | |
dc.description.fil | Fil: Prendes, Jorge. University of Toulouse, Institut de Recherche en Informatique de Toulouse; Francia. | |
dc.description.fil | Fil: D'Giano, Jorge. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. | |
dc.relation.ispartofVOLUME | 23 | |
dc.relation.ispartofNUMBER | 2 | |
dc.relation.ispartofPAGINATION | 17-24 | |
dc.relation.ispartofCOUNTRY | Argentina | |
dc.relation.ispartofCITY | Buenos Aires | |
dc.relation.ispartofTITLE | Revista Argentina de Bioingeniería | |
dc.relation.ispartofISSN | 2591-376X | |
dc.type.snrd | info:ar-repo/semantics/artículo | es_ES |