DSpace Repositorium (Manakin basiert)

Unsupervised machine learning models reveal predictive clinical markers of glioblastoma patient survival using white blood cell counts prior to initiating chemoradiation

Zur Kurzanzeige

dc.contributor.author Wang, Wesley
dc.contributor.author Kumm, Zeynep Temerit
dc.contributor.author Ho, Cindy
dc.contributor.author Zanesco-Fontes, Ideli
dc.contributor.author Texiera, Gustavo
dc.contributor.author Reis, Rui Manuel
dc.contributor.author Martinetto, Horacio
dc.contributor.author Khan, Javaria
dc.contributor.author McCandless, Martin G.
dc.contributor.author Baker, Katherine E.
dc.contributor.author Anderson, Mark D.
dc.contributor.author Chohan, Muhammad Omar
dc.contributor.author Beyer, Sasha
dc.contributor.author Elder, J. Brad
dc.contributor.author Giglio, Pierre
dc.contributor.author Otero, José Javier
dc.date.accessioned 2024-04-19T15:35:39Z
dc.date.available 2024-04-19T15:35:39Z
dc.date.issued 2023-11-11
dc.identifier.citation Wang W, Kumm ZT, Ho C, Zanesco-Fontes I, Texiera G, Reis RM, et al. Unsupervised machine learning models reveal predictive clinical markers of glioblastoma patient survival using white blood cell counts prior to initiating chemoradiation. Neurooncol Adv. 2024;6(1):vdad140. es_ES
dc.identifier.uri https://doi.org/10.1093/noajnl/vdad140
dc.identifier.uri https://repositorio.fleni.org.ar/xmlui/handle/123456789/1083
dc.description.abstract Background Glioblastoma is a malignant brain tumor requiring careful clinical monitoring even after primary management. Personalized medicine has suggested the use of various molecular biomarkers as predictors of patient prognosis or factors utilized for clinical decision-making. However, the accessibility of such molecular testing poses a constraint for various institutes requiring identification of low-cost predictive biomarkers to ensure equitable care. Methods We collected retrospective data from patients seen at Ohio State University, University of Mississippi, Barretos Cancer Hospital (Brazil), and FLENI (Argentina) who were managed for glioblastoma—amounting to 581 patient records documented using REDCap. Patients were evaluated using an unsupervised machine learning approach comprised of dimensionality reduction and eigenvector analysis to visualize the inter-relationship of collected clinical features. Results We discovered that the serum white blood cell (WBC) count of a patient during baseline planning for treatment was predictive of overall survival with an over 6-month median survival difference between the upper and lower quartiles of WBC count. By utilizing an objective PD-L1 immunohistochemistry quantification algorithm, we were further able to identify an increase in PD-L1 expression in glioblastoma patients with high serum WBC counts. Conclusions These findings suggest that in a subset of glioblastoma patients the incorporation of WBC count and PD-L1 expression in the brain tumor biopsy as simple biomarkers predicting glioblastoma patient survival. Moreover, machine learning models allow the distillation of complex clinical data sets to uncover novel and meaningful clinical relationships. es_ES
dc.language.iso eng es_ES
dc.publisher Oxford University Press es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.subject Clinical Decision-Making es_ES
dc.subject Toma de Decisiones Clínicas es_ES
dc.subject Glioblastoma es_ES
dc.subject Unsupervised Machine Learning es_ES
dc.subject Aprendizaje Automático no Supervisado es_ES
dc.subject Survival es_ES
dc.subject Supervivencia es_ES
dc.title Unsupervised machine learning models reveal predictive clinical markers of glioblastoma patient survival using white blood cell counts prior to initiating chemoradiation es_ES
dc.type info:eu-repo/semantics/article es_ES
dc.type info:eu-repo/semantics/publishedVersion
dc.description.fil Fil: Martinetto, Horacio. Fleni. Departamento de Neuropatología y Biología Molecular; Argentina.
dc.relation.ispartofVOLUME 6
dc.relation.ispartofNUMBER 1
dc.relation.ispartofCOUNTRY Reino Unido
dc.relation.ispartofCITY Oxford
dc.relation.ispartofTITLE Neuro-oncology advances
dc.relation.ispartofISSN 2632-2498
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Dateien zu dieser Ressource

Das Dokument erscheint in:

Zur Kurzanzeige

DSpace Suche


Stöbern

Mein Benutzerkonto

Statistik