dc.contributor.author |
Poggio, Rosana |
|
dc.contributor.author |
Rodriguez-Granillo, Gaston A. |
|
dc.contributor.author |
De Lillo, Florencia |
|
dc.contributor.author |
Rubilar, Alejandra Bibiana |
|
dc.contributor.author |
Garron-Arias, Sarah Y. |
|
dc.contributor.author |
Pérez, Nelba |
|
dc.contributor.author |
Hijazi, Razan |
|
dc.contributor.author |
Solari, Claudia |
|
dc.contributor.author |
Olivera-Mores, María |
|
dc.contributor.author |
Rodríguez Varela, María Soledad |
|
dc.contributor.author |
Möbbs, Alan |
|
dc.contributor.author |
Mancini, Estefanía |
|
dc.contributor.author |
Berdiñas, Ignacio |
|
dc.contributor.author |
La Greca, Alejandro |
|
dc.contributor.author |
Luzzani, Carlos |
|
dc.contributor.author |
Miriuka, Santiago Gabriel |
|
dc.date.accessioned |
2025-06-05T16:58:52Z |
|
dc.date.available |
2025-06-05T16:58:52Z |
|
dc.date.issued |
2025-05-02 |
|
dc.identifier.citation |
Poggio R, Rodriguez-Granillo GA, De Lillo F, Rubilar AB, Garron-Arias SY, Perez N, et al. Liquid Biopsy Based on Whole Blood Transcriptome and Artificial Intelligence for the prediction of Coronary Artery Calcification: A Pilot study. European Heart Journal - Digital Health. 2 de mayo de 2025;ztaf042 |
es_ES |
dc.identifier.uri |
https://doi.org/10.1093/ehjdh/ztaf042 |
|
dc.identifier.uri |
https://repositorio.fleni.org.ar/xmlui/handle/123456789/1375 |
|
dc.description.abstract |
Aims
Whole blood RNA expression is modulated in response to signals from tissues, including the vessel wall. The primary objective of this study was to explore the ability of whole blood transcriptomes, analysed using artificial intelligence (AI), to predict coronary artery calcifications (CAC).
Methods and results
A total of 196 subjects [men aged 40–70 years and women aged 50–70 years without known cardiovascular disease (CVD)] were non-consecutively enrolled for CAC assessment via chest computed tomography. Whole blood RNA was isolated and sequenced. Different AI models were trained using clinical and transcriptomic variables as distinctive features to identify the presence of CAC (Agatston score >0). Finally, we compared the predictive performance of these models. The prevalence of CAC was 43.9%. The combined AI model, incorporating transcriptome data along with age, sex, body mass index, smoking status, diabetes, and hypercholesterolaemia, achieved an area under the curve (AUC) of 0.92 (95% CI, 0.88–0.95) for predicting the presence of CAC, with a sensitivity of 92%, specificity of 80%, positive predictive value of 81%, negative predictive value of 91%, and an overall accuracy of 86%. The combined AI model demonstrated significantly improved discrimination compared with the transcriptomic model (AUC 0.79; P = 0.009), the clinical variables model (AUC 0.72; P < 0.001), and the CVD risk model (AUC 0.68; P < 0.001).
Conclusion
In this pilot study, an AI model integrating whole blood transcriptome data with clinical risk factors demonstrated the ability to predict CAC, providing incremental value over clinical models. Further studies are needed to achieve more robust validation. |
es_ES |
dc.language.iso |
eng |
es_ES |
dc.publisher |
Oxford |
es_ES |
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.subject |
Transcriptome |
es_ES |
dc.subject |
Transcriptoma |
es_ES |
dc.subject |
Vascular Calcification |
es_ES |
dc.subject |
Calcificación Vascular |
es_ES |
dc.subject |
Artificial Intelligence |
es_ES |
dc.subject |
Inteligencia Artificial |
es_ES |
dc.subject |
Machine Learning |
es_ES |
dc.subject |
Aprendizaje Automático |
es_ES |
dc.subject |
Liquid Biopsy |
es_ES |
dc.subject |
Biopsia Líquida |
es_ES |
dc.title |
Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study |
es_ES |
dc.type |
info:eu-repo/semantics/article |
es_ES |
dc.type |
info:eu-repo/semantics/publishedVersion |
|
dc.description.fil |
Fil: Pérez, Nelba. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
|
dc.description.fil |
Fil: Rodríguez Varela, María Soledad. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
|
dc.description.fil |
Fil: La Greca, Alejandro. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
|
dc.description.fil |
Fil: Miriuka, Santiago Gabriel. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
|
dc.relation.ispartofCOUNTRY |
Reino Unido |
|
dc.relation.ispartofCITY |
Oxford |
|
dc.relation.ispartofTITLE |
European heart journal. Digital health |
|
dc.relation.ispartofISSN |
2634-3916 |
|
dc.type.snrd |
info:ar-repo/semantics/artículo |
es_ES |