DSpace Repository

Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study

Show simple item record

dc.contributor.author Poggio, Rosana
dc.contributor.author Rodriguez-Granillo, Gaston A.
dc.contributor.author De Lillo, Florencia
dc.contributor.author Rubilar, Alejandra Bibiana
dc.contributor.author Garron-Arias, Sarah Y.
dc.contributor.author Pérez, Nelba
dc.contributor.author Hijazi, Razan
dc.contributor.author Solari, Claudia
dc.contributor.author Olivera-Mores, María
dc.contributor.author Rodríguez Varela, María Soledad
dc.contributor.author Möbbs, Alan
dc.contributor.author Mancini, Estefanía
dc.contributor.author Berdiñas, Ignacio
dc.contributor.author La Greca, Alejandro
dc.contributor.author Luzzani, Carlos
dc.contributor.author Miriuka, Santiago Gabriel
dc.date.accessioned 2025-06-05T16:58:52Z
dc.date.available 2025-06-05T16:58:52Z
dc.date.issued 2025-05-02
dc.identifier.citation Poggio R, Rodriguez-Granillo GA, De Lillo F, Rubilar AB, Garron-Arias SY, Perez N, et al. Liquid Biopsy Based on Whole Blood Transcriptome and Artificial Intelligence for the prediction of Coronary Artery Calcification: A Pilot study. European Heart Journal - Digital Health. 2 de mayo de 2025;ztaf042 es_ES
dc.identifier.uri https://doi.org/10.1093/ehjdh/ztaf042
dc.identifier.uri https://repositorio.fleni.org.ar/xmlui/handle/123456789/1375
dc.description.abstract Aims Whole blood RNA expression is modulated in response to signals from tissues, including the vessel wall. The primary objective of this study was to explore the ability of whole blood transcriptomes, analysed using artificial intelligence (AI), to predict coronary artery calcifications (CAC). Methods and results A total of 196 subjects [men aged 40–70 years and women aged 50–70 years without known cardiovascular disease (CVD)] were non-consecutively enrolled for CAC assessment via chest computed tomography. Whole blood RNA was isolated and sequenced. Different AI models were trained using clinical and transcriptomic variables as distinctive features to identify the presence of CAC (Agatston score >0). Finally, we compared the predictive performance of these models. The prevalence of CAC was 43.9%. The combined AI model, incorporating transcriptome data along with age, sex, body mass index, smoking status, diabetes, and hypercholesterolaemia, achieved an area under the curve (AUC) of 0.92 (95% CI, 0.88–0.95) for predicting the presence of CAC, with a sensitivity of 92%, specificity of 80%, positive predictive value of 81%, negative predictive value of 91%, and an overall accuracy of 86%. The combined AI model demonstrated significantly improved discrimination compared with the transcriptomic model (AUC 0.79; P = 0.009), the clinical variables model (AUC 0.72; P < 0.001), and the CVD risk model (AUC 0.68; P < 0.001). Conclusion In this pilot study, an AI model integrating whole blood transcriptome data with clinical risk factors demonstrated the ability to predict CAC, providing incremental value over clinical models. Further studies are needed to achieve more robust validation. es_ES
dc.language.iso eng es_ES
dc.publisher Oxford es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.subject Transcriptome es_ES
dc.subject Transcriptoma es_ES
dc.subject Vascular Calcification es_ES
dc.subject Calcificación Vascular es_ES
dc.subject Artificial Intelligence es_ES
dc.subject Inteligencia Artificial es_ES
dc.subject Machine Learning es_ES
dc.subject Aprendizaje Automático es_ES
dc.subject Liquid Biopsy es_ES
dc.subject Biopsia Líquida es_ES
dc.title Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study es_ES
dc.type info:eu-repo/semantics/article es_ES
dc.type info:eu-repo/semantics/publishedVersion
dc.description.fil Fil: Pérez, Nelba. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.description.fil Fil: Rodríguez Varela, María Soledad. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.description.fil Fil: La Greca, Alejandro. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.description.fil Fil: Miriuka, Santiago Gabriel. Fleni. Laboratorios de Investigación Aplicada en Neurociencias; Argentina. Fleni. Instituto de Neurociencias FLENI-CONICET; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.relation.ispartofCOUNTRY Reino Unido
dc.relation.ispartofCITY Oxford
dc.relation.ispartofTITLE European heart journal. Digital health
dc.relation.ispartofISSN 2634-3916
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics