Repositorio Dspace

Predicting Treatment Outcomes in Glioblastoma: A Risk Score Model for TMZ Resistance and Immune Checkpoint Inhibition

Mostrar el registro sencillo del ítem

dc.contributor.author Gonzalez, Nazareno
dc.contributor.author Perez Küper, Melanie
dc.contributor.author Garcia Fallit, Matias
dc.contributor.author Nicola Candia, Alejandro J.
dc.contributor.author Peña Agudelo, Jorge A.
dc.contributor.author Suarez Velandia, Maicol
dc.contributor.author Romero, Ana Clara
dc.contributor.author Videla-Richardson, Guillermo Agustin
dc.contributor.author Candolfi, Marianela
dc.date.accessioned 2025-06-10T14:33:46Z
dc.date.available 2025-06-10T14:33:46Z
dc.date.issued 2025-05-20
dc.identifier.citation Gonzalez N, Perez Küper M, Garcia Fallit M, Nicola Candia AJ, Peña Agudelo JA, Suarez Velandia M, Romero AC, Videla-Richardson GA, Candolfi M. Predicting Treatment Outcomes in Glioblastoma: A Risk Score Model for TMZ Resistance and Immune Checkpoint Inhibition. Biology (Basel). 2025 May 20;14(5):572. doi: 10.3390/biology14050572. es_ES
dc.identifier.uri https://doi.org/10.3390/biology14050572
dc.identifier.uri https://repositorio.fleni.org.ar/xmlui/handle/123456789/1382
dc.description.abstract Glioblastoma (GBM) presents significant therapeutic challenges due to its invasive nature and resistance to standard chemotherapy, i.e., temozolomide (TMZ). This study aimed to identify gene signatures that predict poor TMZ response and high PD-L1/PD-1 tumor expression, and explore potential sensitivity to alternative drugs. We analyzed The Cancer Genome Atlas (TCGA) biopsy data to identify differentially expressed genes (DEGs) linked to these characteristics. Among 33 upregulated DEGs, 5 were significantly correlated with overall survival. A risk score model was built using these 5 DEGs, classifying patients into low-, medium-, and high-risk groups. We assessed immune cell infiltration, immunosuppressive mediators, and epithelial-mesenchymal transition (EMT) markers in each group using correlation analysis, Gene Set Enrichment Analysis (GSEA), and machine learning. The model demonstrated strong predictive power, with high-risk patients exhibiting poorer survival and increased immune infiltration. GSEA revealed upregulation of immune and EMT-related pathways in high-risk patients. Our analyses suggest that high-risk patients may exhibit limited response to PD-1 inhibitors, but could show sensitivity to etoposide and paclitaxel. This risk score model provides a valuable tool for guiding therapeutic decisions and identifying alternative chemotherapy options to enable the development of personalized and cost-effective treatments for GBM patients. es_ES
dc.language.iso eng es_ES
dc.publisher MDPI es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.subject Glioblastoma es_ES
dc.title Predicting Treatment Outcomes in Glioblastoma: A Risk Score Model for TMZ Resistance and Immune Checkpoint Inhibition es_ES
dc.type info:eu-repo/semantics/article es_ES
dc.type info:eu-repo/semantics/publishedVersion
dc.description.fil Fil: Videla Richardson, Guillermo Agustín. Fleni. Laboratorio de Investigación Aplicada a las Neurociencias; Argentina.
dc.relation.ispartofVOLUME 14
dc.relation.ispartofNUMBER 5
dc.relation.ispartofPAGINATION 572
dc.relation.ispartofCOUNTRY Suiza
dc.relation.ispartofCITY Basilea
dc.relation.ispartofTITLE Biology
dc.relation.ispartofISSN 2079-7737
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta

Estadísticas