Repositorio Dspace

Pipeline to detect spike-and-wave EEG patterns based on polynomial regression modeling and Taylor series feature selection

Mostrar el registro sencillo del ítem

dc.contributor.author Adell, Matias F.
dc.contributor.author Balda, Javier
dc.contributor.author Casas, Facundo
dc.contributor.author D’Giano, Carlos
dc.contributor.author Quintero-Rincón, Antonio
dc.date.accessioned 2025-12-02T14:04:11Z
dc.date.available 2025-12-02T14:04:11Z
dc.date.issued 2025-06
dc.identifier.citation Adell, MF, Balda J, Casas F, D’Giano C, Quintero-Rincón A. Pipeline to detect spike-and-wave EEG patterns based on polynomial regression modeling and Taylor series feature selection .XIII Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 24 al 26 de junio de 2025). es_ES
dc.identifier.uri https://repositorio.fleni.org.ar/xmlui/handle/123456789/1458
dc.description.abstract Epilepsy is a common neurological disorder diagnosed and monitored through EEG recordings. Accurate spike-and-wave (SW) pattern classification is crucial for distinguishing this epileptic seizure disorder from normal brain wave activity (NW). However, mathematically modeling SW remains challenging, affecting classification accuracy. This study proposes a pipeline in two stages combining polynomial regression techniques, and data processing, in a machine-learning classification scheme. At the first stage of decision-making, the idea is to create a generalized waveform mother that represents all the waveforms of the EEG patterns, such as SW and NW. This waveform is derived from a polynomial regression model that is assessed by the truncation error of the Taylor series. In the second stage, a feature selection algorithm based on a vector that includes the coefficients from Taylor and the statistical properties of the SW and NW waveforms was designed for the machine learning classifier. This algorithm uses the confidence interval to extract the Taylor series points that do not represent the generalized mother equation. This yields a dimensional reduction of this vector, which can be used in a classification and detection scheme. Three polynomial regression models, such as Fourier, Gaussian, and sums-of-sines were evaluated using the pipeline methodology. The best model was the Fourier regression, which achieved an accuracy of 96.2% using the SVM classifier with a Gaussian kernel to detect spike-and-wave patterns. es_ES
dc.language.iso eng es_ES
dc.publisher Instituto de Investigación en Informática es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.subject Epilepsy es_ES
dc.subject Epilepsia es_ES
dc.subject Electroencephalography es_ES
dc.subject Electroencefalografía es_ES
dc.title Pipeline to detect spike-and-wave EEG patterns based on polynomial regression modeling and Taylor series feature selection es_ES
dc.type info:eu-repo/semantics/bookPart es_ES
dc.type info:eu-repo/semantics/publishedVersion
dc.description.fil Fil: D'Giano, Carlos. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina.
dc.relation.ispartofNUMBER 35-48.
dc.relation.ispartofTITLE 13th Conference on Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET 2025)
dc.type.snrd info:ar-repo/semantics/parte de libro es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta

Estadísticas