DSpace Repositorium (Manakin basiert)

Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters

Zur Kurzanzeige

dc.contributor.author Zorgno, Ivanna
dc.contributor.author Blanc, María Cecilia
dc.contributor.author Oxenford, Simon
dc.contributor.author Gil Garbagnoli, Francisco
dc.contributor.author D’Giano, Carlos
dc.contributor.author Quintero Rincón, Antonio
dc.date.accessioned 2020-12-22T12:46:16Z
dc.date.available 2020-12-22T12:46:16Z
dc.date.issued 2019-02-21
dc.identifier.citation Zorgno, I., Blanc, M.C., Oxenford, S., Garbagnoli, F.G., D´giano, C., Quintero Rincón, A. Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters. 2019. Presented at the 2018 IEEE Biennial Congress of Argentina (ARGENCON). doi: 10.1109/ARGENCON.2018.8646234. en_US
dc.identifier.uri https://doi.org/10.1109/ARGENCON.2018.8646234
dc.identifier.uri https://repositorio.fleni.org.ar/handle/123456789/280
dc.description.abstract Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals. en_US
dc.language.iso eng en_US
dc.publisher IEEE en_US
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri https://creativecommons.org/licenses/by/2.5/ar/
dc.subject Epilepsy en_US
dc.subject Epilepsia en_US
dc.subject Electroencephalography en_US
dc.subject Electroencefalografía en_US
dc.title Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters en_US
dc.type info:eu-repo/semantics/publishedVersion
dc.type info:eu-repo/semantics/other en_US
dc.description.fil Fil: Zorgno, Ivanna. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: Blanc, María Cecilia. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: Oxenford, Simon. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: Gil Garbagnoli, Francisco. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: D’Giano, Carlos. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina.
dc.description.fil Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.relation.ispartofTITLE 2018 IEEE Biennial Congress of Argentina (ARGENCON)
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Dateien zu dieser Ressource

Das Dokument erscheint in:

Zur Kurzanzeige

info:eu-repo/semantics/openAccess Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: info:eu-repo/semantics/openAccess

DSpace Suche


Stöbern

Mein Benutzerkonto

Statistik