DSpace Repository

Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters

Show simple item record

dc.contributor.author Zorgno, Ivanna
dc.contributor.author Blanc, María Cecilia
dc.contributor.author Oxenford, Simon
dc.contributor.author Gil Garbagnoli, Francisco
dc.contributor.author D’Giano, Carlos
dc.contributor.author Quintero Rincón, Antonio
dc.date.accessioned 2020-12-22T12:46:16Z
dc.date.available 2020-12-22T12:46:16Z
dc.date.issued 2019-02-21
dc.identifier.citation Zorgno, I., Blanc, M.C., Oxenford, S., Garbagnoli, F.G., D´giano, C., Quintero Rincón, A. Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters. 2019. Presented at the 2018 IEEE Biennial Congress of Argentina (ARGENCON). doi: 10.1109/ARGENCON.2018.8646234. en_US
dc.identifier.uri https://doi.org/10.1109/ARGENCON.2018.8646234
dc.identifier.uri https://repositorio.fleni.org.ar/handle/123456789/280
dc.description.abstract Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals. en_US
dc.language.iso eng en_US
dc.publisher IEEE en_US
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri https://creativecommons.org/licenses/by/2.5/ar/
dc.subject Epilepsy en_US
dc.subject Epilepsia en_US
dc.subject Electroencephalography en_US
dc.subject Electroencefalografía en_US
dc.title Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters en_US
dc.type info:eu-repo/semantics/publishedVersion
dc.type info:eu-repo/semantics/other en_US
dc.description.fil Fil: Zorgno, Ivanna. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: Blanc, María Cecilia. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: Oxenford, Simon. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: Gil Garbagnoli, Francisco. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: D’Giano, Carlos. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina.
dc.description.fil Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.relation.ispartofTITLE 2018 IEEE Biennial Congress of Argentina (ARGENCON)
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess

Search DSpace


Browse

My Account

Statistics