dc.contributor.author |
Quintero Rincón, Antonio |
|
dc.contributor.author |
Muro, Valeria L. |
|
dc.contributor.author |
D'Giano, Carlos |
|
dc.contributor.author |
Prendes, Jorge |
|
dc.contributor.author |
Batatia, Hadj |
|
dc.date.accessioned |
2021-05-03T12:43:50Z |
|
dc.date.available |
2021-05-03T12:43:50Z |
|
dc.date.issued |
2020-10-29 |
|
dc.identifier.citation |
Quintero Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H., 2020. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals. Computers 9, 85. |
es_ES |
dc.identifier.uri |
https://repositorio.fleni.org.ar/xmlui/handle/123456789/450 |
|
dc.identifier.uri |
https://doi.org/10.3390/computers9040085 |
|
dc.description.abstract |
Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings. |
es_ES |
dc.language.iso |
eng |
es_ES |
dc.publisher |
MDPI |
es_ES |
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.rights.uri |
https://creativecommons.org/licenses/by/2.5/ar/ |
|
dc.subject |
Electroencephalography |
es_ES |
dc.subject |
Electroencefalografía |
es_ES |
dc.subject |
Epilepsy |
es_ES |
dc.subject |
Epilepsia |
es_ES |
dc.title |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
es_ES |
dc.type |
info:eu-repo/semantics/article |
es_ES |
dc.type |
info:eu-repo/semantics/publishedVersion |
|
dc.description.fil |
Fil: Quintero Rincón, Antonio. Universidad Católica de Buenos Aires; Argentina. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. |
|
dc.description.fil |
Fil: Muro, Valeria L. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. |
|
dc.description.fil |
Fil: D'Giano, Jorge. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. |
|
dc.description.fil |
Fil: Prendes, Jorge. IRIT-INPT-ENSEEIHT; Francia. |
|
dc.description.fil |
Fil: Batatia, Hadj. Heriot-Watt Universit. MACS School; Emiratos Árabes Unidos. |
|
dc.relation.ispartofVOLUME |
9 |
|
dc.relation.ispartofNUMBER |
4 |
|
dc.relation.ispartofPAGINATION |
85 |
|
dc.relation.ispartofCOUNTRY |
Suiza |
|
dc.relation.ispartofCITY |
Basel |
|
dc.type.snrd |
info:ar-repo/semantics/artículo |
es_ES |