Mostrar el registro sencillo del ítem
dc.contributor.author | Quintero Rincón, Antonio | |
dc.contributor.author | Muro, Valeria L. | |
dc.contributor.author | D'Giano, Carlos | |
dc.contributor.author | Prendes, Jorge | |
dc.contributor.author | Batatia, Hadj | |
dc.date.accessioned | 2021-05-03T12:43:50Z | |
dc.date.available | 2021-05-03T12:43:50Z | |
dc.date.issued | 2020-10-29 | |
dc.identifier.citation | Quintero Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H., 2020. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals. Computers 9, 85. | es_ES |
dc.identifier.uri | https://repositorio.fleni.org.ar/xmlui/handle/123456789/450 | |
dc.identifier.uri | https://doi.org/10.3390/computers9040085 | |
dc.description.abstract | Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/2.5/ar/ | |
dc.subject | Electroencephalography | es_ES |
dc.subject | Electroencefalografía | es_ES |
dc.subject | Epilepsy | es_ES |
dc.subject | Epilepsia | es_ES |
dc.title | Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.description.fil | Fil: Quintero Rincón, Antonio. Universidad Católica de Buenos Aires; Argentina. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. | |
dc.description.fil | Fil: Muro, Valeria L. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. | |
dc.description.fil | Fil: D'Giano, Jorge. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. | |
dc.description.fil | Fil: Prendes, Jorge. IRIT-INPT-ENSEEIHT; Francia. | |
dc.description.fil | Fil: Batatia, Hadj. Heriot-Watt Universit. MACS School; Emiratos Árabes Unidos. | |
dc.relation.ispartofVOLUME | 9 | |
dc.relation.ispartofNUMBER | 4 | |
dc.relation.ispartofPAGINATION | 85 | |
dc.relation.ispartofCOUNTRY | Suiza | |
dc.relation.ispartofCITY | Basel | |
dc.type.snrd | info:ar-repo/semantics/artículo | es_ES |