Mostrar el registro sencillo del ítem
dc.contributor.author | Quintero Rincón, Antonio | |
dc.contributor.author | D'Giano, Carlos | |
dc.contributor.author | Batatia, Hadj | |
dc.date.accessioned | 2022-07-12T17:00:25Z | |
dc.date.available | 2022-07-12T17:00:25Z | |
dc.date.issued | 2019-08-28 | |
dc.identifier.citation | Quintero-Rincón A, D'giano C, Batatia H. A quadratic linear-parabolic model-based EEG classification to detect epileptic seizures. J Biomed Res. 2019 Aug 28;34(3):205-212. doi: 10.7555/JBR.33.20190012 | es_ES |
dc.identifier.uri | https://doi.org/10.7555/JBR.33.20190012 | |
dc.identifier.uri | https://repositorio.fleni.org.ar/xmlui/handle/123456789/626 | |
dc.description.abstract | The two-point central difference is a common algorithm in biological signal processing and is particularly useful in analyzing physiological signals. In this paper, we develop a model-based classification method to detect epileptic seizures that relies on this algorithm to filter electroencephalogram (EEG) signals. The underlying idea was to design an EEG filter that enhances the waveform of epileptic signals. The filtered signal was fitted to a quadratic linear-parabolic model using the curve fitting technique. The model fitting was assessed using four statistical parameters, which were used as classification features with a random forest algorithm to discriminate seizure and non-seizure events. The proposed method was applied to 66 epochs from the Children Hospital Boston database. Results showed that the method achieved fast and accurate detection of epileptic seizures, with a 92% sensitivity, 96% specificity, and 94.1% accuracy. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Editorial Department of the Journals of Nanjing Medical University | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/2.5/ar/ | |
dc.subject | Electroencefalografía | es_ES |
dc.subject | Electroencephalography | es_ES |
dc.subject | Epilepsia | es_ES |
dc.subject | Epilepsy | es_ES |
dc.title | A quadratic linear-parabolic model-based EEG classification to detect epileptic seizures | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.description.fil | Fil: Quintero-Rincón, Antonio. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina. | |
dc.description.fil | Fil: D'Giano, Carlos. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. | |
dc.description.fil | Fil: Batatia, Hadj. University of Toulouse. Institut de Recherche en Informatique de Toulouse; Francia. | |
dc.relation.ispartofVOLUME | 34 | |
dc.relation.ispartofNUMBER | 3 | |
dc.relation.ispartofPAGINATION | 205-212 | |
dc.relation.ispartofCOUNTRY | China | |
dc.relation.ispartofCITY | Nanjing | |
dc.relation.ispartofTITLE | Journal of biomedical research | |
dc.relation.ispartofISSN | 2352-4685 | |
dc.type.snrd | info:ar-repo/semantics/artículo | es_ES |