dc.contributor.author |
Quintero Rincón, Antonio |
|
dc.contributor.author |
D'Giano, Carlos |
|
dc.contributor.author |
Batatia, Hadj |
|
dc.date.accessioned |
2019-10-31T14:54:01Z |
|
dc.date.available |
2019-10-31T14:54:01Z |
|
dc.date.issued |
2019-07-11 |
|
dc.identifier.citation |
Quintero Rincón A, D’Giano C, Batatia H. Seizure Onset Detection in EEG Signals Based on Entropy from Generalized Gaussian PDF Modeling and Ensemble Bagging Classifier. In: Chaari L, ed. Digital Health Approach for Predictive, Preventive, Personalised and Participatory Medicine. Advances in Predictive, Preventive and Personalised Medicine. Springer International Publishing; 2019:1-10. |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/978-3-030-11800-6_1 |
|
dc.identifier.uri |
https://repositorio.fleni.org.ar/handle/123456789/93 |
|
dc.description.abstract |
This paper proposes a new algorithm for epileptic seizure onset detection in EEG signals. The algorithm relies on the measure of the entropy of observed data sequences. Precisely, the data is decomposed into different brain rhythms using wavelet multi-scale transformation. The resulting coefficients are represented using their generalized Gaussian distribution. The proposed algorithm estimates the parameters of the distribution and the associated entropy. Next, an ensemble bagging classifier is used to performs the seizure onset detection using the entropy of each brain rhythm, by discriminating between seizure and non-seizure. Preliminary experiments with 105 epileptic events suggest that the proposed methodology is a powerful tool for detecting seizures in epileptic signals in terms of classification accuracy, sensitivity and specificity. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
Springer |
en_US |
dc.relation.ispartofseries |
Advances in Predictive, Preventive and Personalised Medicine |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.rights.uri |
https://creativecommons.org/licenses/by/2.5/ar/ |
|
dc.subject |
Entropy |
en_US |
dc.subject |
Entropía |
en_US |
dc.subject |
Normal Distribution |
en_US |
dc.subject |
Distribución Normal |
en_US |
dc.subject |
Wavelet Analysis |
en_US |
dc.subject |
Análisis de Ondículas |
en_US |
dc.subject |
Electroencephalography |
en_US |
dc.subject |
Electroencefalografía |
en_US |
dc.subject |
Epilepsy |
en_US |
dc.subject |
Epilepsia |
en_US |
dc.title |
Seizure Onset Detection in EEG Signals Based on Entropy from Generalized Gaussian PDF Modeling and Ensemble Bagging Classifier |
en_US |
dc.type |
info:eu-repo/semantics/publishedVersion |
|
dc.type |
info:eu-repo/semantics/bookPart |
en_US |
dc.description.fil |
Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina. |
|
dc.description.fil |
Fil: D'Giano, Carlos. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina. |
|
dc.description.fil |
Fil: Batatia, Hadj. University of Toulouse. Institut de Recherche en Informatique de Toulouse; Francia. |
|
dc.relation.ispartofCOUNTRY |
Suiza |
|
dc.relation.ispartofCITY |
Cham |
|
dc.relation.ispartofTITLE |
Digital Health Approach for Predictive, Preventive, Personalised and Participatory Medicine |
|
dc.relation.ispartofISBN |
978-3-030-11800-6 |
|
dc.type.snrd |
info:ar-repo/semantics/artículo |
es_ES |