Repositorio Dspace

Seizure Onset Detection in EEG Signals Based on Entropy from Generalized Gaussian PDF Modeling and Ensemble Bagging Classifier

Mostrar el registro sencillo del ítem

dc.contributor.author Quintero Rincón, Antonio
dc.contributor.author D'Giano, Carlos
dc.contributor.author Batatia, Hadj
dc.date.accessioned 2019-10-31T14:54:01Z
dc.date.available 2019-10-31T14:54:01Z
dc.date.issued 2019-07-11
dc.identifier.citation Quintero Rincón A, D’Giano C, Batatia H. Seizure Onset Detection in EEG Signals Based on Entropy from Generalized Gaussian PDF Modeling and Ensemble Bagging Classifier. In: Chaari L, ed. Digital Health Approach for Predictive, Preventive, Personalised and Participatory Medicine. Advances in Predictive, Preventive and Personalised Medicine. Springer International Publishing; 2019:1-10. en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-11800-6_1
dc.identifier.uri https://repositorio.fleni.org.ar/handle/123456789/93
dc.description.abstract This paper proposes a new algorithm for epileptic seizure onset detection in EEG signals. The algorithm relies on the measure of the entropy of observed data sequences. Precisely, the data is decomposed into different brain rhythms using wavelet multi-scale transformation. The resulting coefficients are represented using their generalized Gaussian distribution. The proposed algorithm estimates the parameters of the distribution and the associated entropy. Next, an ensemble bagging classifier is used to performs the seizure onset detection using the entropy of each brain rhythm, by discriminating between seizure and non-seizure. Preliminary experiments with 105 epileptic events suggest that the proposed methodology is a powerful tool for detecting seizures in epileptic signals in terms of classification accuracy, sensitivity and specificity. en_US
dc.language.iso eng en_US
dc.publisher Springer en_US
dc.relation.ispartofseries Advances in Predictive, Preventive and Personalised Medicine
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri https://creativecommons.org/licenses/by/2.5/ar/
dc.subject Entropy en_US
dc.subject Entropía en_US
dc.subject Normal Distribution en_US
dc.subject Distribución Normal en_US
dc.subject Wavelet Analysis en_US
dc.subject Análisis de Ondículas en_US
dc.subject Electroencephalography en_US
dc.subject Electroencefalografía en_US
dc.subject Epilepsy en_US
dc.subject Epilepsia en_US
dc.title Seizure Onset Detection in EEG Signals Based on Entropy from Generalized Gaussian PDF Modeling and Ensemble Bagging Classifier en_US
dc.type info:eu-repo/semantics/publishedVersion
dc.type info:eu-repo/semantics/bookPart en_US
dc.description.fil Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires. Departamento de Bioingeniería; Argentina.
dc.description.fil Fil: D'Giano, Carlos. Fleni. Centro Integral de Epilepsia y Unidad de Monitoreo de Videoelectroencefalografía; Argentina.
dc.description.fil Fil: Batatia, Hadj. University of Toulouse. Institut de Recherche en Informatique de Toulouse; Francia.
dc.relation.ispartofCOUNTRY Suiza
dc.relation.ispartofCITY Cham
dc.relation.ispartofTITLE Digital Health Approach for Predictive, Preventive, Personalised and Participatory Medicine
dc.relation.ispartofISBN 978-3-030-11800-6
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess

Buscar en DSpace


Listar

Mi cuenta

Estadísticas