DSpace Repository

Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates

Show simple item record

dc.contributor.author Gonzalez, Nazareno
dc.contributor.author Pérez Küper, Melanie
dc.contributor.author Garcia Fallit, Matías
dc.contributor.author Peña Agudelo, Jorge A.
dc.contributor.author Candia, Alejandro Nicola
dc.contributor.author Suarez Velandia, Maicol
dc.contributor.author Romero, Ana Clara
dc.contributor.author Videla Richardson, Guillermo Agustín
dc.contributor.author Candolfi, Marianela
dc.date.accessioned 2025-10-07T14:43:16Z
dc.date.available 2025-10-07T14:43:16Z
dc.date.issued 2025-06-13
dc.identifier.citation Gonzalez N, Pérez Küper M, Garcia Fallit M, Agudelo JAP, Nicola Candia A, Suarez Velandia M, Romero AC, Videla Richardson G, Candolfi M. Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates. Brain Sci. 2025 Jun 13;15(6):637. doi: 10.3390/brainsci15060637. es_ES
dc.identifier.uri https://doi.org/10.3390/brainsci15060637
dc.identifier.uri https://repositorio.fleni.org.ar/xmlui/handle/123456789/1406
dc.description.abstract Background: Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and combinations with therapeutic potential. Research design and methods: We analyzed drug sensitivity data for 272 compounds from CancerRxTissue and employed in silico algorithms to assess blood-brain barrier permeability. The model was used to predict GBM sensitivity to various drugs, which was then validated using GBM cellular models. Alternative drugs targeting overexpressed and negative prognostic biomarkers in GBM were experimentally validated. Results: The model predicted that GBM is more sensitive to Etoposide and Cisplatin compared to Temozolomide, which was confirmed by experimental validation in GBM cells. We also identified novel drugs with high predicted sensitivity in GBM. Daporinad, a NAMPT inhibitor that permeates the blood-brain barrier was selected for further preclinical evaluation. This evaluation supported the in silico predictions of high potential efficacy and safety in GBM. Conclusions: Our findings using different cellular models suggest that this computational prediction model could constitute a valuable tool for drug repurposing in GBM and potentially in other tumors, which could accelerate the development of more effective cancer treatments. es_ES
dc.language.iso eng es_ES
dc.publisher MDPI es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.subject Glioblastoma es_ES
dc.subject Reposicionamiento de Medicamentos es_ES
dc.subject Drug Repositioning es_ES
dc.title Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates es_ES
dc.type info:eu-repo/semantics/article es_ES
dc.type info:eu-repo/semantics/publishedVersion
dc.description.fil Fil: Videla Richardson, Guillermo Agustín. Fleni. Instituto de Neurociencias FLENI-CONICET. Laboratorio de Investigación Aplicada a las Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
dc.relation.ispartofVOLUME 15
dc.relation.ispartofNUMBER 6
dc.relation.ispartofPAGINATION 637
dc.relation.ispartofCOUNTRY Suiza
dc.relation.ispartofCITY Basilea
dc.relation.ispartofTITLE Brain sciences
dc.relation.ispartofISSN 2076-3425
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics