Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalez, Nazareno | |
dc.contributor.author | Pérez Küper, Melanie | |
dc.contributor.author | Garcia Fallit, Matías | |
dc.contributor.author | Peña Agudelo, Jorge A. | |
dc.contributor.author | Candia, Alejandro Nicola | |
dc.contributor.author | Suarez Velandia, Maicol | |
dc.contributor.author | Romero, Ana Clara | |
dc.contributor.author | Videla Richardson, Guillermo Agustín | |
dc.contributor.author | Candolfi, Marianela | |
dc.date.accessioned | 2025-10-07T14:43:16Z | |
dc.date.available | 2025-10-07T14:43:16Z | |
dc.date.issued | 2025-06-13 | |
dc.identifier.citation | Gonzalez N, Pérez Küper M, Garcia Fallit M, Agudelo JAP, Nicola Candia A, Suarez Velandia M, Romero AC, Videla Richardson G, Candolfi M. Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates. Brain Sci. 2025 Jun 13;15(6):637. doi: 10.3390/brainsci15060637. | es_ES |
dc.identifier.uri | https://doi.org/10.3390/brainsci15060637 | |
dc.identifier.uri | https://repositorio.fleni.org.ar/xmlui/handle/123456789/1406 | |
dc.description.abstract | Background: Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and combinations with therapeutic potential. Research design and methods: We analyzed drug sensitivity data for 272 compounds from CancerRxTissue and employed in silico algorithms to assess blood-brain barrier permeability. The model was used to predict GBM sensitivity to various drugs, which was then validated using GBM cellular models. Alternative drugs targeting overexpressed and negative prognostic biomarkers in GBM were experimentally validated. Results: The model predicted that GBM is more sensitive to Etoposide and Cisplatin compared to Temozolomide, which was confirmed by experimental validation in GBM cells. We also identified novel drugs with high predicted sensitivity in GBM. Daporinad, a NAMPT inhibitor that permeates the blood-brain barrier was selected for further preclinical evaluation. This evaluation supported the in silico predictions of high potential efficacy and safety in GBM. Conclusions: Our findings using different cellular models suggest that this computational prediction model could constitute a valuable tool for drug repurposing in GBM and potentially in other tumors, which could accelerate the development of more effective cancer treatments. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Glioblastoma | es_ES |
dc.subject | Reposicionamiento de Medicamentos | es_ES |
dc.subject | Drug Repositioning | es_ES |
dc.title | Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.description.fil | Fil: Videla Richardson, Guillermo Agustín. Fleni. Instituto de Neurociencias FLENI-CONICET. Laboratorio de Investigación Aplicada a las Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | |
dc.relation.ispartofVOLUME | 15 | |
dc.relation.ispartofNUMBER | 6 | |
dc.relation.ispartofPAGINATION | 637 | |
dc.relation.ispartofCOUNTRY | Suiza | |
dc.relation.ispartofCITY | Basilea | |
dc.relation.ispartofTITLE | Brain sciences | |
dc.relation.ispartofISSN | 2076-3425 | |
dc.type.snrd | info:ar-repo/semantics/artículo | es_ES |