Resumen:
Background: It has been shown that carvedilol and its non β-blocking analog, VK-II-86, inhibit spontaneous Ca2+ release from
the sarcoplasmic reticulum (SR). The aim of this study is to determine whether carvedilol and VK-II-86 suppress ouabain-induced
arrhythmogenic Ca2+ waves and apoptosis in cardiac myocytes.
Methods and Results: Rat cardiac myocytes were exposed to toxic doses of ouabain (50 µmol/L). Cell length (contraction) was
monitored in electrically stimulated and non-stimulated conditions. Ouabain treatment increased contractility, frequency of spontaneous
contractions and apoptosis compared to control cells. Carvedilol (1µmol/L) or VK-II-86 (1µmol/L) did not affect ouabain-induced
inotropy, but significantly reduced the frequency of Ca2+ waves, spontaneous contractions and cell death evoked by ouabain
treatment. This antiarrhythmic effect was not associated with a reduction in Ca2+ calmodulin-dependent protein kinase II (CaMKII)
activity, phospholamban and ryanodine receptor phosphorylation or SR Ca2+ load. Similar results could be replicated in human
cardiomyocytes derived from stem cells and in a mathematical model of human myocytes.
Conclusions: Carvedilol and VK-II-86 are effective to prevent ouabain-induced apoptosis and spontaneous contractions indicative
of arrhythmogenic activity without affecting inotropy and demonstrated to be effective in human models, thus emerging as a
therapeutic tool for the prevention of digitalis-induced arrhythmias and cardiac toxicity