Repositorio Dspace

Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer's Disease

Mostrar el registro sencillo del ítem

dc.contributor.author Bolívar, Daniel A.
dc.contributor.author Mosquera Heredia, María I.
dc.contributor.author Vidal, Oscar M.
dc.contributor.author Barceló, Ernesto
dc.contributor.author Allegri, Ricardo Francisco
dc.contributor.author Morales, Luis C.
dc.contributor.author Silvera Redondo, Carlos
dc.contributor.author Arcos Burgos, Mauricio
dc.contributor.author Garavito Galofre, Pilar
dc.contributor.author Vélez, Jorge I.
dc.date.accessioned 2025-03-11T10:44:52Z
dc.date.available 2025-03-11T10:44:52Z
dc.date.issued 2024-11-15
dc.identifier.citation Bolívar DA, Mosquera-Heredia MI, Vidal OM, Barceló E, Allegri R, Morales LC, Silvera-Redondo C, Arcos-Burgos M, Garavito-Galofre P, Vélez JI. Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer's Disease. Int J Mol Sci. 2024 Nov 15;25(22):12293. doi: 10.3390/ijms252212293. es_ES
dc.identifier.uri https://doi.org/10.3390/ijms252212293
dc.identifier.uri https://repositorio.fleni.org.ar/xmlui/handle/123456789/1313
dc.description.abstract Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and memory loss. While the precise causes of AD remain unclear, emerging evidence suggests that messenger RNA (mRNA) dysregulation contributes to AD pathology and risk. This study examined exosomal mRNA expression profiles of 15 individuals diagnosed with AD and 15 healthy controls from Barranquilla, Colombia. Utilizing advanced bioinformatics and machine learning (ML) techniques, we identified differentially expressed mRNAs and assessed their predictive power for AD diagnosis and AD age of onset (ADAOO). Our results showed that ENST00000331581 (CADM1) and ENST00000382258 (TNFRSF19) were significantly upregulated in AD patients. Key predictors for AD diagnosis included ENST00000311550 (GABRB3), ENST00000278765 (GGTLC1), ENST00000331581 (CADM1), ENST00000372572 (FOXJ3), and ENST00000636358 (ACY1), achieving > 90% accuracy in both training and testing datasets. For ADAOO, ENST00000340552 (LIMK2) expression correlated with a delay of ~12.6 years, while ENST00000304677 (RNASE6), ENST00000640218 (HNRNPU), ENST00000602017 (PPP5D1), ENST00000224950 (STN1), and ENST00000322088 (PPP2R1A) emerged as the most important predictors. ENST00000304677 (RNASE6) and ENST00000602017 (PPP5D1) showed promising predictive accuracy in unseen data. These findings suggest that mRNA expression profiles may serve as effective biomarkers for AD diagnosis and ADAOO, providing a cost-efficient and minimally invasive tool for early detection and monitoring. Further research is needed to validate these results in larger, diverse cohorts and explore the biological roles of the identified mRNAs in AD pathogenesis. es_ES
dc.language.iso eng es_ES
dc.publisher MDPI es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.subject Alzheimer Disease es_ES
dc.subject Enfermedad de Alzheimer es_ES
dc.subject Biomarcadores es_ES
dc.subject Biomarkers es_ES
dc.subject Exosomas es_ES
dc.subject Exosomes es_ES
dc.subject Biología Molecular
dc.subject Molecular Biology
dc.title Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer's Disease es_ES
dc.type info:eu-repo/semantics/article es_ES
dc.type info:eu-repo/semantics/publishedVersion
dc.description.fil Fil: Allegri, Ricardo Francisco. Fleni. Departamento de Neurología. Servicio de Neurología Cognitiva, Neuropsicología y Neuropsiquiatría; Argentina.
dc.relation.ispartofCOUNTRY Suiza
dc.relation.ispartofCITY Basilea
dc.relation.ispartofTITLE International journal of molecular sciences
dc.relation.ispartofISSN 1422-0067
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta

Estadísticas