Mostrar el registro sencillo del ítem
| dc.contributor.author | Kotochinsky, Martin | |
| dc.contributor.author | Oliveira Fonseca, Pandora Eloa | |
| dc.contributor.author | Ramirez Lopera, Veronica | |
| dc.contributor.author | Mora, Laura | |
| dc.contributor.author | Wellgner Fernandes Oliveira, Amador | |
| dc.contributor.author | Cesar Teixeira Sirena, Eduardo | |
| dc.contributor.author | Bandeira de Melo Guimarães, Felipe | |
| dc.contributor.author | Lahitou Herlyn, Delfina | |
| dc.contributor.author | Norbu Sherpa, Nima | |
| dc.contributor.author | Gonzalez Lezana, Andrea | |
| dc.contributor.author | Pardini Fagundes, Thales | |
| dc.date.accessioned | 2025-12-29T18:01:41Z | |
| dc.date.available | 2025-12-29T18:01:41Z | |
| dc.date.issued | 2025-11-04 | |
| dc.identifier.citation | Kotochinsky M, Fonseca PEO, Lopera VR, Mora L, Amador WFO, Sirena ECT, et al. Comparative diagnostic performance of artificial intelligence models in structural MRI for schizophrenia: A systematic review and meta-analysis. Asian J Psychiatr. 4 de noviembre de 2025;114:104759. | es_ES |
| dc.identifier.uri | https://doi.org/10.1016/j.ajp.2025.104759 | |
| dc.identifier.uri | https://repositorio.fleni.org.ar/xmlui/handle/123456789/1463 | |
| dc.description.abstract | Introduction: Timely diagnosis of schizophrenia is essential to ensure prompt treatment initiation and adherence. Structural magnetic resonance imaging (sMRI), when combined with artificial intelligence (AI), offers a promising avenue to enhance diagnostic accuracy. However, its performance and clinical use is a matter of debate. Methods: PubMed, Embase, and Cochrane databases were searched for studies using AI models with sMRI to diagnose schizophrenia in adults. Eligible models encompass traditional machine learning methods and deep learning (DL) architectures, utilizing diverse neuroanatomical inputs, including gray matter (GM) features and whole-brain (WB) structural data. The outcomes of interest were diagnostic performance metrics as: sensitivity (SE), specificity (SP), area under the curve (AUC). Results: A total of 16 studies were included, comprising 3601 participants. Overall pooled SE and SP were 0.76 (95 % CI: 0.71-0.80) and 0.78 (95 % CI: 0.73-0.82), respectively. When compared, DL models outperformed Support Vector Machine (SVM), achieving higher SP of 0.83 (95 % CI: 0.80-0.86) vs. 0.78 (95 % CI: 0.72-0.83), and AUC of 0.892 (95 % CI: 0.81-0.90) vs. 0.782 (95 % CI: 0.70-0.82). WB input models also outperformed GM performance, with SP of 0.86 (95 % CI: 0.78-0.92) vs. 0.80 (95 % CI: 0.73-0.85), and AUC of 0.89 (95 % CI: 0.70-0.93) vs. 0.816 (95 % CI: 0.71-0.84). Conclusion: AI models using sMRI show promising but provisional diagnostic performance for schizophrenia. Across studies, DL architectures and WB inputs generally achieved higher specificity and AUC than SVM and GM features. Prospective, multi-site external validation cohorts are needed before routine clinical implementation. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Artificial Intelligence | es_ES |
| dc.subject | Inteligencia Artificial | es_ES |
| dc.subject | Magnetic Resonance Imaging | es_ES |
| dc.subject | Imagen por Resonancia Magnética | es_ES |
| dc.subject | Schizophrenia | es_ES |
| dc.subject | Esquizofrenia | es_ES |
| dc.title | Comparative diagnostic performance of artificial intelligence models in structural MRI for schizophrenia: A systematic review and meta-analysis | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.description.fil | Fil: Lahitou Herlyn, Delfina. Fleni. Instituto de Neurociencias FLENI-CONICET. Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta; Argentina. | |
| dc.relation.ispartofCOUNTRY | Países Bajos | |
| dc.relation.ispartofCITY | Amsterdam | |
| dc.relation.ispartofTITLE | Asian journal of psychiatry | |
| dc.relation.ispartofISSN | 1876-2026 | |
| dc.type.snrd | info:ar-repo/semantics/artículo | es_ES |