Repositorio Dspace

Comparative diagnostic performance of artificial intelligence models in structural MRI for schizophrenia: A systematic review and meta-analysis

Mostrar el registro sencillo del ítem

dc.contributor.author Kotochinsky, Martin
dc.contributor.author Oliveira Fonseca, Pandora Eloa
dc.contributor.author Ramirez Lopera, Veronica
dc.contributor.author Mora, Laura
dc.contributor.author Wellgner Fernandes Oliveira, Amador
dc.contributor.author Cesar Teixeira Sirena, Eduardo
dc.contributor.author Bandeira de Melo Guimarães, Felipe
dc.contributor.author Lahitou Herlyn, Delfina
dc.contributor.author Norbu Sherpa, Nima
dc.contributor.author Gonzalez Lezana, Andrea
dc.contributor.author Pardini Fagundes, Thales
dc.date.accessioned 2025-12-29T18:01:41Z
dc.date.available 2025-12-29T18:01:41Z
dc.date.issued 2025-11-04
dc.identifier.citation Kotochinsky M, Fonseca PEO, Lopera VR, Mora L, Amador WFO, Sirena ECT, et al. Comparative diagnostic performance of artificial intelligence models in structural MRI for schizophrenia: A systematic review and meta-analysis. Asian J Psychiatr. 4 de noviembre de 2025;114:104759. es_ES
dc.identifier.uri https://doi.org/10.1016/j.ajp.2025.104759
dc.identifier.uri https://repositorio.fleni.org.ar/xmlui/handle/123456789/1463
dc.description.abstract Introduction: Timely diagnosis of schizophrenia is essential to ensure prompt treatment initiation and adherence. Structural magnetic resonance imaging (sMRI), when combined with artificial intelligence (AI), offers a promising avenue to enhance diagnostic accuracy. However, its performance and clinical use is a matter of debate. Methods: PubMed, Embase, and Cochrane databases were searched for studies using AI models with sMRI to diagnose schizophrenia in adults. Eligible models encompass traditional machine learning methods and deep learning (DL) architectures, utilizing diverse neuroanatomical inputs, including gray matter (GM) features and whole-brain (WB) structural data. The outcomes of interest were diagnostic performance metrics as: sensitivity (SE), specificity (SP), area under the curve (AUC). Results: A total of 16 studies were included, comprising 3601 participants. Overall pooled SE and SP were 0.76 (95 % CI: 0.71-0.80) and 0.78 (95 % CI: 0.73-0.82), respectively. When compared, DL models outperformed Support Vector Machine (SVM), achieving higher SP of 0.83 (95 % CI: 0.80-0.86) vs. 0.78 (95 % CI: 0.72-0.83), and AUC of 0.892 (95 % CI: 0.81-0.90) vs. 0.782 (95 % CI: 0.70-0.82). WB input models also outperformed GM performance, with SP of 0.86 (95 % CI: 0.78-0.92) vs. 0.80 (95 % CI: 0.73-0.85), and AUC of 0.89 (95 % CI: 0.70-0.93) vs. 0.816 (95 % CI: 0.71-0.84). Conclusion: AI models using sMRI show promising but provisional diagnostic performance for schizophrenia. Across studies, DL architectures and WB inputs generally achieved higher specificity and AUC than SVM and GM features. Prospective, multi-site external validation cohorts are needed before routine clinical implementation. es_ES
dc.language.iso eng es_ES
dc.publisher Elsevier es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.subject Artificial Intelligence es_ES
dc.subject Inteligencia Artificial es_ES
dc.subject Magnetic Resonance Imaging es_ES
dc.subject Imagen por Resonancia Magnética es_ES
dc.subject Schizophrenia es_ES
dc.subject Esquizofrenia es_ES
dc.title Comparative diagnostic performance of artificial intelligence models in structural MRI for schizophrenia: A systematic review and meta-analysis es_ES
dc.type info:eu-repo/semantics/article es_ES
dc.type info:eu-repo/semantics/publishedVersion
dc.description.fil Fil: Lahitou Herlyn, Delfina. Fleni. Instituto de Neurociencias FLENI-CONICET. Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta; Argentina.
dc.relation.ispartofCOUNTRY Países Bajos
dc.relation.ispartofCITY Amsterdam
dc.relation.ispartofTITLE Asian journal of psychiatry
dc.relation.ispartofISSN 1876-2026
dc.type.snrd info:ar-repo/semantics/artículo es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta

Estadísticas